ﻻ يوجد ملخص باللغة العربية
Many networks must maintain synchrony despite the fact that they operate in noisy environments. Important examples are stochastic inertial oscillators, which are known to exhibit fluctuations with broad tails in many applications, including electric power networks with renewable energy sources. Such non-Gaussian fluctuations can result in rare network desynchronization. Here we build a general theory for inertial oscillator network desynchronization by non-Gaussian noise. We compute the rate of desynchronization and show that higher-moments of noise enter at specific powers of coupling: either speeding up or slowing down the rate exponentially depending on how noise statistics match the statistics of a networks slowest mode. Finally, we use our theory to introduce a technique that drastically reduces the effective description of network desynchronization. Most interestingly, when instability is associated with a single edge, the reduction is to one stochastic oscillator.
Stochastic feed-in of fluctuating renewable energies is steadily increasing in modern electricity grids and this becomes an important risk factor for maintaining power grid stability. Here we study the impact of wind power feed-in on the short-term f
Traffic is essential for many dynamic processes on real networks, such as internet and urban traffic systems. The transport efficiency of the traffic system can be improved by taking full advantage of the resources in the system. In this paper, we pr
We examine analytically and numerically a variant of the stochastic Kuramoto model for phase oscillators coupled on a general network. Two populations of phased oscillators are considered, labelled `Blue and `Red, each with their respective networks,
We report the study of sudden transitions or tipping in a collection of systems induced due to multiplexing with another network of systems. The emergent dynamics of oscillators on one layer can undergo a sudden transition to steady state due to indi
A universal approach is proposed for suppression of collective synchrony in a large population of interacting rhythmic units. We demonstrate that provided that the internal coupling is weak, stabilization of overall oscillations with vanishing stimul