ترغب بنشر مسار تعليمي؟ اضغط هنا

The ExoEarth Yield Landscape for Future Direct Imaging Space Telescopes

203   0   0.0 ( 0 )
 نشر من قبل Christopher Stark
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The expected yield of potentially Earth-like planets is a useful metric for designing future exoplanet-imaging missions. Recent yield studies of direct-imaging missions have focused primarily on yield methods and trade studies using toy models of missions. Here we increase the fidelity of these calculations substantially, adopting more realistic exoplanet demographics as input, an improved target list, and a realistic distribution of exozodi levels. Most importantly, we define standardized inputs for instrument simulations, use these standards to directly compare the performance of realistic instrument designs, include the sensitivity of coronagraph contrast to stellar diameter, and adopt engineering-based throughputs and detector parameters. We apply these new high-fidelity yield models to study several critical design trades: monolithic vs segmented primary mirrors, on-axis vs off-axis secondary mirrors, and coronagraphs vs starshades. We show that as long as the gap size between segments is sufficiently small, there is no difference in yield for coronagraph-based missions with monolithic off-axis telescopes and segmented off-axis telescopes, assuming that the requisite engineering constraints imposed by the coronagraph can be met in both scenarios. We show that there is currently a factor of ~2 yield penalty for coronagraph-based missions with on-axis telescopes compared to off-axis telescopes, and note that there is room for improvement in coronagraph designs for on-axis telescopes. We also reproduce previous results in higher fidelity showing that the yields of coronagraph-based missions continue to increase with aperture size while the yields of starshade-based missions turnover at large apertures if refueling is not possible. Finally, we provide absolute yield numbers with uncertainties that include all major sources of astrophysical noise to guide future mission design.



قيم البحث

اقرأ أيضاً

ExoEarth yield is a critical science metric for future exoplanet imaging missions. Here we estimate exoEarth candidate yield using single visit completeness for a variety of mission design and astrophysical parameters. We review the methods used in p revious yield calculations and show that the method choice can significantly impact yield estimates as well as how the yield responds to mission parameters. We introduce a method, called Altruistic Yield Optimization, that optimizes the target list and exposure times to maximize mission yield, adapts maximally to changes in mission parameters, and increases exoEarth candidate yield by up to 100% compared to previous methods. We use Altruistic Yield Optimization to estimate exoEarth candidate yield for a large suite of mission and astrophysical parameters using single visit completeness. We find that exoEarth candidate yield is most sensitive to telescope diameter, followed by coronagraph inner working angle, followed by coronagraph contrast, and finally coronagraph contrast noise floor. We find a surprisingly weak dependence of exoEarth candidate yield on exozodi level. Additionally, we provide a quantitative approach to defining a yield goal for future exoEarth-imaging missions.
72 - Thayne Currie 2019
Ground-based telescopes coupled with adaptive optics (AO) have been playing a leading role in exoplanet direct imaging science and technological development for the past two decades and will continue to have an indispensable role for the next decade and beyond. Over the next decade, extreme AO systems on 8-10m telescopes will 1) mitigate risk for WFIRST-CGI by identifying numerous planets the mission can spectrally characterize, 2) validate performance requirements and motivate improvements to atmosphere models needed to unambiguously characterize solar system-analogues from space, and 3) mature novel technological innovations useful for space. Extremely Large Telescopes can deliver the first thermal infrared (10 $mu m$) images of rocky planets around Sun-like stars and identify biomarkers. These data provide a future NASA direct imaging flagship mission (i.e. HabEx, LUVOIR) with numerous exo-Earth candidates and critical ancillary information to help clarify whether these planets are habitable.
Planet yield calculations may be used to inform the target selection strategy and science operations of space observatories. Forthcoming and proposed NASA missions, such as the Wide-Field Infrared Survey Telescope (WFIRST), the Habitable Exoplanet Im aging Mission (HabEx), and the Large UV/Optical/IR Surveyor (LUVOIR), are expected to be equipped with sensitive coronagraphs and/or starshades. We are developing a suite of numerical simulations to quantify the extent to which ground-based radial velocity (RV) surveys could boost the detection efficiency of direct imaging missions. In this paper, we discuss the first step in the process of estimating planet yields: generating synthetic planetary systems consistent with observed occurrence rates from multiple detection methods. In an attempt to self-consistently populate stars with orbiting planets, it is found that naive extrapolation of occurrence rates (mass, semi-major axis) results in an unrealistically large number-density of Neptune-mass planets beyond the ice-line ($a gtrsim 5$au), causing dynamic interactions that would destabilize orbits. We impose a stability criterion for multi-planet systems based on mutual Hill radii separation. Considering the influence of compact configurations containing Jovian-mass and Neptune-mass planets results in a marked suppression in the number of terrestrial planets that can exist at large radii. This result has a pronounced impact on planet yield calculations particularly in regions accessible to high-contrast imaging and microlensing. The dynamically compact configurations and occurrence rates that we develop may be incorporated as input into joint RV and direct imaging yield calculations to place meaningful limits on the number of detectable planets with future missions.
Direct imaging is a powerful exoplanet discovery technique that is complementary to other techniques and offers great promise in the era of 30 meter class telescopes. Space-based transit surveys have revolutionized our understanding of the frequency of planets at small orbital radii around Sun-like stars. The next generation of extremely large ground-based telescopes will have the angular resolution and sensitivity to directly image planets with $R < 4R_oplus$ around the very nearest stars. Here, we predict yields from a direct imaging survey of a volume-limited sample of Sun-like stars with the Mid-Infrared ELT Imager and Spectrograph (METIS) instrument, planned for the 39 m European Southern Observatory (ESO) Extremely Large Telescope (ELT) that is expected to be operational towards the end of the decade. Using Kepler occurrence rates, a sample of stars with spectral types A-K within 6.5 pc, and simulated contrast curves based on an advanced model of what is achievable from coronagraphic imaging with adaptive optics, we estimated the expected yield from METIS using Monte Carlo simulations. We find the METIS expected yield of planets in the N2 band (10.10 - 12.40 $mu$m) is 1.14 planets, which is greater than comparable observations in the L (3.70 - 3.95 $mu$m) and M (4.70 - 4.90 $mu$m) bands. We also determined a 24.6% chance of detecting at least one Jovian planet in the background limited regime assuming a 1 hour integration. We calculated the yield per star and estimate optimal observing revisit times to increase the yield. We also analyzed a northern hemisphere version of this survey and found there are additional targets worth considering. In conclusion, we present an observing strategy aimed to maximize the possible yield for limited telescope time, resulting in 1.48 expected planets in the N2 band.
A critical question in astrobiology is whether exoEarth candidates (EECs) are Earth-like, in that they originate life that progressively oxygenates their atmospheres similarly to Earth. We propose answering this question statistically by searching fo r O2 and O3 on EECs with missions such as HabEx or LUVOIR. We explore the ability of these missions to constrain the fraction, fE, of EECs that are Earth-like in the event of a null detection of O2 or O3 on all observed EECs. We use the Planetary Spectrum Generator to simulate observations of EECs with O2 and O3 levels based on Earths history. We consider four instrument designs: LUVOIR-A (15m), LUVOIR-B (8m), HabEx with a starshade (4m, HabEx/SS), HabEx without a starshade (4m, HabEx/no-SS); as well as three estimates of the occurrence rate of EECs (eta_earth): 24%, 5%, and 0.5%. In the case of a null-detection, we find that for eta_earth = 24%, LUVOIR-A, LUVOIR-B, and HabEx/SS would constrain fE to <= 0.094, <= 0.18, and <= 0.56, respectively. This also indicates that if fE is greater than these upper limits, we are likely to detect O3 on at least 1 EEC. Conversely, we find that HabEx/no-SS cannot constrain fE, due to the lack of an coronagraph ultraviolet channel. For eta_earth = 5%, only LUVOIR-A and LUVOIR-B would be able to constrain fE, to <= 0.45 and <= 0.85, respectively. For eta_earth = 0.5%, none of the missions would allow us to constrain fE, due to the low number of detectable EECs. We conclude that the ability to constrain fE is more robust to uncertainties in eta_earth for missions with larger aperture mirrors. However all missions are susceptible to an inconclusive null detection if eta_earth is sufficiently low.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا