ﻻ يوجد ملخص باللغة العربية
We consider optimization problems with uncertain constraints that need to be satisfied probabilistically. When data are available, a common method to obtain feasible solutions for such problems is to impose sampled constraints, following the so-called scenario optimization approach. However, when the data size is small, the sampled constraints may not statistically support a feasibility guarantee on the obtained solution. This paper studies how to leverage parametric information and the power of Monte Carlo simulation to obtain feasible solutions for small-data situations. Our approach makes use of a distributionally robust optimization (DRO) formulation that translates the data size requirement into a Monte Carlo sample size requirement drawn from what we call a generating distribution. We show that, while the optimal choice of this generating distribution is the one eliciting the data or the baseline distribution in a nonparametric divergence-based DRO, it is not necessarily so in the parametric case. Correspondingly, we develop procedures to obtain generating distributions that improve upon these basic choices. We support our findings with several numerical examples.
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the pe
We present a distributionally robust formulation of a stochastic optimization problem for non-i.i.d vector autoregressive data. We use the Wasserstein distance to define robustness in the space of distributions and we show, using duality theory, that
This paper studies distributionally robust optimization (DRO) when the ambiguity set is given by moments for the distributions. The objective and constraints are given by polynomials in decision variables. We reformulate the DRO with equivalent momen
We propose and analyze algorithms for distributionally robust optimization of convex losses with conditional value at risk (CVaR) and $chi^2$ divergence uncertainty sets. We prove that our algorithms require a number of gradient evaluations independe