ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamics of Galactic centre pulsars: constraining pulsar distances and intrinsic spin-down

80   0   0.0 ( 0 )
 نشر من قبل Benetge Perera
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Through high-precision radio timing observations, we show that five recycled pulsars in the direction of the Galactic Centre (GC) have anomalous spin period time derivative ($dot P$) measurements -- PSRs J1748$-$3009, J1753$-$2819, J1757$-$2745, and J1804$-$2858 show negative values of $dot P$ and PSR J1801$-$3210 is found to have an exceptionally small value of $dot P$. We attribute these observed $dot P$ measurements to acceleration of these pulsars along their lines-of-sight (LOSs) due to the Galactic gravitational field. Using models of the Galactic mass distribution and pulsar velocities, we constrain the distances to these pulsars, placing them on the far-side of the Galaxy, providing the first accurate distance measurements to pulsars located in this region and allowing us to consider the electron density along these LOSs. We find the new electron density model YMW16 to be more consistent with these observations than the previous model NE2001. The LOS dynamics further constrain the model-dependent intrinsic $dot P$ values for these pulsars and they are consistent with measurements for other known pulsars. In the future, the independent distance measurements to these and other pulsars near the GC would allow us to constrain the Galactic gravitational potential more accurately.



قيم البحث

اقرأ أيضاً

The high stellar density in the central parsecs around the Galactic Centre makes it a seemingly favourable environment for finding relativistic binary pulsars. These include pulsars orbiting other neutron stars, stellar-mass black holes or the centra l supermassive black hole, Sagittarius A*. Here we present multi-epoch pulsar searches of the Galactic Centre at four observing frequencies, (4.85, 8.35, 14.6 18.95) GHz, using the Effelsberg 100-m radio telescope. Observations were conducted one year prior to the discovery of, and during monitoring observations of, the Galactic Centre magnetar PSR J1745-2900. Our data analysis features acceleration searches on progressively shorter time series to maintain sensitivity to relativistic binary pulsars. The multi-epoch observations increase the likelihood of discovering transient or nulling pulsars, or ensure orbital phases are observed at which acceleration search methods work optimally. In ~147 h of separate observations, no previously undiscovered pulsars have been detected. Through calibration observations, we conclude this might be due to insufficient instantaneous sensitivity; caused by the intense continuum emission from the Galactic Centre, its large distance and, at higher frequencies, the aggregate effect of steep pulsar spectral indices and atmospheric contributions to the system temperature. Additionally we find that for millisecond pulsars in wide circular orbits ~<800 d around Sagittarius A*, linear acceleration effects cannot be corrected in deep observations (9 h) with existing software tools. Pulsar searches of the Galactic Centre with the next generation of radio telescopes - such as MeerKat, ngVLA and SKA1-mid - will have improved chances of uncovering this elusive population.
71 - C. Ng , B. Wu , M. Ma 2020
The Pulsar backend of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) has monitored hundreds of known pulsars in the northern sky since Fall 2018, providing a rich data set for the study of temporal variations in pulsar emission. Using a m atched filtering technique, we report, for the first time, nulling behaviour in five pulsars as well as mode switching in nine pulsars. Only one of the pulsars is observed to show both nulling and moding signals. These new nulling and mode switching pulsars appear to come from a population with relatively long spin periods, in agreement with previous findings in the literature.
108 - Man Ho Chan , Chak Man Lee 2020
Recent gamma-ray and cosmic-ray observations have put strong constraints on the amount of primordial black holes (PBHs) in our universe. In this article, we use the archival radio data of the inner Galactic Centre to constrain the PBH to dark matter ratio for three different PBH mass distributions including monochromatic, log-normal and power-law. We show that the amount of PBHs only constitutes a very minor component of dark matter at the Galactic Centre for a large parameter space.
Evidence has increasingly mounted in recent decades that outflows of matter and energy from the central parsecs of our Galaxy have shaped the observed structure of the Milky Way on a variety of larger scales. On scales of ~15 pc, the Galactic centre has bipolar lobes that can be seen in both X-rays and radio, indicating broadly collimated outflows from the centre, directed perpendicular to the Galactic plane. On far larger scales approaching the size of the Galaxy itself, gamma-ray observations have identified the so-called Fermi Bubble features, implying that our Galactic centre has, or has recently had, a period of active energy release leading to a production of relativistic particles that now populate huge cavities on both sides of the Galactic plane. The X-ray maps from the ROSAT all-sky survey show that the edges of these cavities close to the Galactic plane are bright in X-rays. At intermediate scales (~150 pc), radio astronomers have found the Galactic Centre Lobe, an apparent bubble of emission seen only at positive Galactic latitudes, but again indicative of energy injection from near the Galactic centre. Here we report the discovery of prominent X-ray structures on these intermediate (hundred-parsec) scales above and below the plane, which appear to connect the Galactic centre region to the Fermi bubbles. We propose that these newly-discovered structures, which we term the Galactic Centre Chimneys, constitute a channel through which energy and mass, injected by a quasi-continuous train of episodic events at the Galactic centre, are transported from the central parsecs to the base of the Fermi bubbles.
To study the strength and structure of the magnetic field in the Galactic centre (GC) we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observe d in any Galactic object with the exception of Sgr A*. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ~ 16-33 microgauss; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (~ 12 degrees). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths >~ 100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا