ﻻ يوجد ملخص باللغة العربية
In this paper, we use the latest results of the ultra-high accuracy 1S-2S transition experiments in hydrogen atom to constrain the forms of the deformed dispersion relation in the nonrelativistic limit. For the leading correction of the nonrelativistic limit, the experiment sets a limit at an order of magnitude for the desired Planck-scale level, thereby providing another example of the Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments. And for the next-to-leading term, bound has two orders of magnitude away from the Planck scale, but it still amounts to the best limit, in contrast to previously obtained bound in the nonrelativistic limit from the cold-atom-recoil experiments.
We use the method of double pole QCD sum rule which is basically a fit with two exponentials of the correlation function, where we can extract the masses and decay constants of mesons as a function of the Borel mass. We apply this method to study the
Recently, we studied the magic wavelength for the atomic hydrogen 1S-2S transition [A.K., Phys. Rev. A 92, 042507 (2015)]. An explicit summation over virtual atomic states of the discrete part of the hydrogen spectrum was performed to evaluate the at
The inclusive $Upsilon(1S,2S,3S)$ photoproduction at the future Circular-Electron-Positron-Collider (CEPC) is studied based on the non-relativistic QCD (NRQCD). Including the contributions from both direct and resolved photons, we present different d
In this article we find the Zeeman corrections for hydrogen atom in the case of twist-deformed space-time. Particularly, we derive the corresponding orbital and spin $hat{g}$-factors as well as we notice, that the second one of them remains undeformed.
The dipion transitions $Upsilon(2S,3S,4S) to Upsilon(1S,2S)pipi$ are systematically studied by considering the mechanisms of the hadronization of soft gluons, exchanging the bottomoniumlike $Z_b$ states, and the bottom-meson loops. The strong pion-pi