ﻻ يوجد ملخص باللغة العربية
We demonstrate that the effective third-order nonlinear susceptibility of a graphene sheet can be enhanced by more than two orders of magnitude by patterning it into a graphene metasurface. In addition, in order to gain deeper physical insights into this phenomenon, we introduce a novel homogenization method, which is subsequently used to characterize quantitatively this nonlinearity enhancement effect by calculating the effective linear and nonlinear susceptibility of graphene metasurfaces. The accuracy of the proposed homogenization method is demonstrated by comparing its predictions with those obtained from the Kramers-Kronig relations. This work may open up new opportunities to explore novel physics pertaining to nonlinear optical interactions in graphene metasurfaces.
Topologically protected plasmonic modes located inside topological bandgaps are attracting increasing attention, chiefly due to their robustness against disorder-induced backscattering. Here, we introduce a bilayer graphene metasurface that possesses
Plasmon induced transparency (PIT) effect in a terahertz graphene metamaterial is numerically and theoretically analyzed. The proposed metamaterial comprises of a pair of graphene split ring resonators placed alternately on both sides of a graphene s
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct
Machine learning and optimization algorithms have been widely applied in the design and optimization for photonic devices. In this article, we briefly review recent progress of this field of research and show some data-driven applications (e.g. spect
A hybrid metal-graphene metamaterial (MM) is reported to achieve the active control of the broadband plasmon-induced transparency (PIT) in THz region. The unit cell consists of one cut wire (CW), four U-shape resonators (USRs) and monolayer graphene