ﻻ يوجد ملخص باللغة العربية
SrTiO$_3$ is a unique example of a system which exhibits both quantum paraelectricity and superconductivity. Thus, it is expected that the superconducting state is closely related to the intrinsic ferroelectric instability. Indeed, recent experiments suggest existence of a coexistent phase of superconductivity and ferroelectricity in Ca-substituted SrTiO$_3$. In this paper, we propose that SrTiO$_3$ can be a platform of the ferroelectric superconductivity, which is characterized by a ferroelectric transition in the superconducting state. By analyzing a multiorbital model for $t_{2g}$ electrons, we show that the ferroelectric superconductivity is stabilized through two different mechanisms which rely on the presence of the spin-orbit coupling. First, the ferroelectric superconducting state is stabilized in the dilute carrier density regime due to a ferroelectricity-induced Lifshitz transition. Second, it is stabilized under a magnetic field independent of the carrier density. The importance of the multiorbital or multiband nature for the ferroelectric superconductivity is clarified. Then, we predict a topological Weyl superconducting state in the ferroelectric superconducting phase of SrTiO$_3$.
The soft ferro-electric phonon in SrTiO3 observed with optical spectroscopy has an extraordinary strong spectral weight which is much stronger than expected in the limit of a perfectly ionic compound. The charged phonon in SrTiO3 is caused by the clo
SrTiO$_3$ exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature mbox{$T_mathrm{c} approx 0.4$~K}. Using microwave stripline resonators at frequencies from 2 to 23~GHz and temperatures down to 0.02~K, we probe the lo
We introduce a variational state for one-dimensional two-orbital Hubbard models that intuitively explains the recent computational discovery of pairing in these systems when hole doped. Our Ansatz is an optimized linear superposition of Affleck-Kenne
Recent experiments in multiband Fe-based and heavy-fermion superconductors have challenged the long-held dichotomy between simple $s$- and $d$-wave spin-singlet pairing states. Here, we advance several time-reversal-invariant irreducible pairings tha
We demonstrate that SrTiO$_3$ can be a platform for observing the bulk odd-frequency superconducting state owing to the multiorbital/multiband nature. We consider a three-orbital tight-binding model for SrTiO$_3$ in the vicinity of a ferroelectric cr