ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Continuous Range-Skyline Query Monitoring over the Internet of Mobile Things

78   0   0.0 ( 0 )
 نشر من قبل Chuan-Chi Lai
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A Range-Skyline Query (RSQ) is the combination of range query and skyline query. It is one of the practical query types in multi-criteria decision services, which may include the spatial and non-spatial information as well as make the resulting information more useful than skyline search when the location is concerned. Furthermore, Continuous Range-Skyline Query (CRSQ) is an extension of Range-Skyline Query (RSQ) that the system continuously reports the skyline results to a query within a given search range. This work focuses on the RSQ and CRSQ within a specific range on Internet of Mobile Things (IoMT) applications. Many server-client approaches for CRSQ have been proposed but are sensitive to the number of moving objects. We propose an effective and non-centralized approach, Distributed Continuous Range-Skyline Query process (DCRSQ process), for supporting RSQ and CRSQ in mobile environments. By considering the mobility, the proposed approach can predict the time when an object falls in the query range and ignore more irrelevant information when deriving the results, thus saving the computation overhead. The proposed approach, DCRSQ process, is analyzed on cost and validated with extensive simulated experiments. The results show that DCRSQ process outperforms the existing approaches in different scenarios and aspects.



قيم البحث

اقرأ أيضاً

With the advancement of technology, the data generated in our lives is getting faster and faster, and the amount of data that various applications need to process becomes extremely huge. Therefore, we need to put more effort into analyzing data and e xtracting valuable information. Cloud computing used to be a good technology to solve a large number of data analysis problems. However, in the era of the popularity of the Internet of Things (IoT), transmitting sensing data back to the cloud for centralized data analysis will consume a lot of wireless communication and network transmission costs. To solve the above problems, edge computing has become a promising solution. In this paper, we propose a new algorithm for processing probabilistic skyline queries over uncertain data streams in an edge computing environment. We use the concept of a second skyline set to filter data that is unlikely to be the result of the skyline. Besides, the edge server only sends the information needed to update the global analysis results on the cloud server, which will greatly reduce the amount of data transmitted over the network. The results show that our proposed method not only reduces the response time by more than 50% compared with the brute force method on two-dimensional data but also maintains the leading processing speed on high-dimensional data.
78 - Bin Cao , Yixin Li , Lei Zhang 2019
Blockchain has been regarded as a promising technology for Internet of Things (IoT), since it provides significant solutions for decentralized network which can address trust and security concerns, high maintenance cost problem, etc. The decentraliza tion provided by blockchain can be largely attributed to the use of consensus mechanism, which enables peer-to-peer trading in a distributed manner without the involvement of any third party. This article starts from introducing the basic concept of blockchain and illustrating why consensus mechanism plays an indispensable role in a blockchain enabled IoT system. Then, we discuss the main ideas of two famous consensus mechanisms including Proof of Work (PoW) and Proof of Stake (PoS), and list their limitations in IoT. Next, two mainstream Direct Acyclic Graph (DAG) based consensus mechanisms, i.e., the Tangle and Hashgraph, are reviewed to show why DAG consensus is more suitable for IoT system than PoW and PoS. Potential issues and challenges of DAG based consensus mechanism to be addressed in the future are discussed in the last.
Industrial Fog computing deploys various industrial services, such as automatic monitoring/control and imminent failure detection, at the Fog Nodes (FNs) to improve the performance of industrial systems. Much effort has been made in the literature on the design of fog network architecture and computation offloading. This paper studies an equally important but much less investigated problem of service hosting where FNs are adaptively configured to host services for Sensor Nodes (SNs), thereby enabling corresponding tasks to be executed by the FNs. The problem of service hosting emerges because of the limited computational and storage resources at FNs, which limit the number of different types of services that can be hosted by an FN at the same time. Considering the variability of service demand in both temporal and spatial dimensions, when, where, and which services to host have to be judiciously decided to maximize the utility of the Fog computing network. Our proposed Fog configuration strategies are tailored to battery-powered FNs. The limited battery capacity of FNs creates a long-term energy budget constraint that significantly complicates the Fog configuration problem as it introduces temporal coupling of decision making across the timeline. To address all these challenges, we propose an online distributed algorithm, called Adaptive Fog Configuration (AFC), based on Lyapunov optimization and parallel Gibbs sampling. AFC jointly optimizes service hosting and task admission decisions, requiring only currently available system information while guaranteeing close-to-optimal performance compared to an oracle algorithm with full future information.
Advances in mobile computing have paved the way for new types of distributed applications that can be executed solely by mobile devices on device-to-device (D2D) ecosystems (e.g., crowdsensing). Sophisticated applications, like cryptocurrencies, need distributed ledgers to function. Distributed ledgers, such as blockchains and directed acyclic graphs (DAGs), employ consensus protocols to add data in the form of blocks. However, such protocols are designed for resourceful devices that are interconnected via the Internet. Moreover, existing distributed ledgers are not deployable to D2D ecosystems since their storage needs are continuously increasing. In this work, we introduce and analyse Mneme, a DAG-based distributed ledger that can be maintained solely by mobile devices. Mneme utilizes two novel consensus protocols: Proof-of-Context (PoC) and Proof-of-Equivalence (PoE). PoC employs users context to add data on Mneme. PoE is executed periodically to summarize data and produce equivalent blocks that require less storage. We analyze Mnemes security and justify the ability of PoC and PoE to guarantee the characteristics of distributed ledgers: persistence and liveness. Furthermore, we analyze potential attacks from malicious users and prove that the probability of a successful attack is inversely proportional to the square of the number of mobile users who maintain Mneme.
Spatial queries like range queries, nearest neighbor, circular range queries etc. are the most widely used queries in the location-based applications. Building secure and efficient solutions for these queries in the cloud computing framework is criti cal and has been an area of active research. This paper focuses on the problem of Secure Circular Range Queries (SCRQ), where client submits an encrypted query (consisting of a center point and radius of the circle) and the cloud (storing encrypted data points) has to return the points lying inside the circle. The existing solutions for this problem suffer from various disadvantages such as high processing time which is proportional to square of the query radius, query generation phase which is directly proportional to the number of points covered by the query etc. This paper presents solution for the above problem which is much more efficient than the existing solutions. Three protocols are proposed with varying characteristics. It is shown that all the three protocols are secure. The proposed protocols can be extended to multiple dimensions and thus are able to handle Secure Hypersphere Range Queries (SHRQ) as well. Internally the proposed protocols use pairing-based cryptography and a concept of lookup table. To enable the efficient use of limited size lookup table, a new storage scheme is presented. The proposed storage scheme enables the protocols to handle query with much larger radius values. Using the SHRQ protocols, we also propose a mechanism to answer the Secure range Queries. Extensive performance evaluation has been done to evaluate the efficiency of the proposed protocols
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا