ﻻ يوجد ملخص باللغة العربية
Fully self-consistent band calculation has been performed for slab phase in neutron-star inner crust, using the BCPM energy density functional. Optimized slab structure is calculated at given baryon density either with the fixed proton ratio or with the beta-equilibrium condition. Numerical results indicate the band gap of in order of keV to tens of keV, and the mobility of dripped neutrons are enhanced by the Bragg scattering, which leads to the macroscopic effective mass, $bar{m}^*_z/m_n=0.65sim 0.75$ near the bottom of the inner crust in neutron stars. We also compare the results of the band calculation with those of the Thomas-Fermi approximation. The Thomas-Fermi approximation becomes invalid at low density with high proton ratio.
We investigate the dynamics of a quantized vortex and a nuclear impurity immersed in a neutron superfluid within a fully microscopic time-dependent three-dimensional approach. The magnitude and even the sign of the force between the quantized vortex
A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slo
With the goal of determining the $theta_{13}$ neutrino oscillation mixing angle, the measurements of reactor antineutrino fluxes at the Double Chooz, RENO and Daya Bay experimental facilities have uncovered a systematic discrepancy between the number
By means of Monte Carlo methods, we perform a full error analysis on the Duflo-Zucker mass model. In particular, we study the presence of correlations in the residuals to obtain a more realistic estimate of the error bars on the predicted binding ene
The possibility to draw links between the isospin properties of nuclei and the structure of compact stars is a stimulating perspective. In order to pursue this objective on a sound basis, the correlations from which such links can be deduced have to