ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-assisted associative adversarial network: Applying quantum annealing in deep learning

57   0   0.0 ( 0 )
 نشر من قبل Max Wilson
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an algorithm for learning a latent variable generative model via generative adversarial learning where the canonical uniform noise input is replaced by samples from a graphical model. This graphical model is learned by a Boltzmann machine which learns low-dimensional feature representation of data extracted by the discriminator. A quantum annealer, the D-Wave 2000Q, is used to sample from this model. This algorithm joins a growing family of algorithms that use a quantum annealing subroutine in deep learning, and provides a framework to test the advantages of quantum-assisted learning in GANs. Fully connected, symmetric bipartite and Chimera graph topologies are compared on a reduced stochastically binarized MNIST dataset, for both classical and quantum annealing sampling methods. The quantum-assisted associative adversarial network successfully learns a generative model of the MNIST dataset for all topologies, and is also applied to the LSUN dataset bedrooms class for the Chimera topology. Evaluated using the Fr{e}chet inception distance and inception score, the quantum and classic



قيم البحث

اقرأ أيضاً

Recent progress in quantum algorithms and hardware indicates the potential importance of quantum computing in the near future. However, finding suitable application areas remains an active area of research. Quantum machine learning is touted as a pot ential approach to demonstrate quantum advantage within both the gate-model and the adiabatic schemes. For instance, the Quantum-assisted Variational Autoencoder has been proposed as a quantum enhancement to the discrete VAE. We extend on previous work and study the real-world applicability of a QVAE by presenting a proof-of-concept for similarity search in large-scale high-dimensional datasets. While exact and fast similarity search algorithms are available for low dimensional datasets, scaling to high-dimensional data is non-trivial. We show how to construct a space-efficient search index based on the latent space representation of a QVAE. Our experiments show a correlation between the Hamming distance in the embedded space and the Euclidean distance in the original space on the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset. Further, we find real-world speedups compared to linear search and demonstrate memory-efficient scaling to half a billion data points.
153 - Owen Lockwood 2021
Quantum Machine Learning (QML) is considered to be one of the most promising applications of near term quantum devices. However, the optimization of quantum machine learning models presents numerous challenges arising from the imperfections of hardwa re and the fundamental obstacles in navigating an exponentially scaling Hilbert space. In this work, we evaluate the potential of contemporary methods in deep reinforcement learning to augment gradient based optimization routines in quantum variational circuits. We find that reinforcement learning augmented optimizers consistently outperform gradient descent in noisy environments. All code and pretrained weights are available to replicate the results or deploy the models at https://github.com/lockwo/rl_qvc_opt.
Quantum physics experiments produce interesting phenomena such as interference or entanglement, which is a core property of numerous future quantum technologies. The complex relationship between a quantum experiments structure and its entanglement pr operties is essential to fundamental research in quantum optics but is difficult to intuitively understand. We present the first deep generative model of quantum optics experiments where a variational autoencoder (QOVAE) is trained on a dataset of experimental setups. In a series of computational experiments, we investigate the learned representation of the QOVAE and its internal understanding of the quantum optics world. We demonstrate that the QOVAE learns an intrepretable representation of quantum optics experiments and the relationship between experiment structure and entanglement. We show the QOVAE is able to generate novel experiments for highly entangled quantum states with specific distributions that match its training data. Importantly, we are able to fully interpret how the QOVAE structures its latent space, finding curious patterns that we can entirely explain in terms of quantum physics. The results demonstrate how we can successfully use and understand the internal representations of deep generative models in a complex scientific domain. The QOVAE and the insights from our investigations can be immediately applied to other physical systems throughout fundamental scientific research.
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples. However, most existing AT methods adopt a specific attack to craft adversarial examples, leading to th e unreliable robustness against other unseen attacks. Besides, a single attack algorithm could be insufficient to explore the space of perturbations. In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models. ADT is formulated as a minimax optimization problem, where the inner maximization aims to learn an adversarial distribution to characterize the potential adversarial examples around a natural one under an entropic regularizer, and the outer minimization aims to train robust models by minimizing the expected loss over the worst-case adversarial distributions. Through a theoretical analysis, we develop a general algorithm for solving ADT, and present three approaches for parameterizing the adversarial distributions, ranging from the typical Gaussian distributions to the flexible implicit ones. Empirical results on several benchmarks validate the effectiveness of ADT compared with the state-of-the-art AT methods.
Boltzmann Machines constitute a class of neural networks with applications to image reconstruction, pattern classification and unsupervised learning in general. Their most common variants, called Restricted Boltzmann Machines (RBMs) exhibit a good tr ade-off between computability on existing silicon-based hardware and generality of possible applications. Still, the diffusion of RBMs is quite limited, since their training process proves to be hard. The advent of commercial Adiabatic Quantum Computers (AQCs) raised the expectation that the implementations of RBMs on such quantum devices could increase the training speed with respect to conventional hardware. To date, however, the implementation of RBM networks on AQCs has been limited by the low qubit connectivity when each qubit acts as a node of the neural network. Here we demonstrate the feasibility of a complete RBM on AQCs, thanks to an embedding that associates its nodes to virtual qubits, thus outperforming previous implementations based on incomplete graphs. Moreover, to accelerate the learning, we implement a semantic quantum search which, contrary to previous proposals, takes the input data as initial boundary conditions to start each learning step of the RBM, thanks to a reverse annealing schedule. Such an approach, unlike the more conventional forward annealing schedule, allows sampling configurations in a meaningful neighborhood of the training data, mimicking the behavior of the classical Gibbs sampling algorithm. We show that the learning based on reverse annealing quickly raises the sampling probability of a meaningful subset of the set of the configurations. Even without a proper optimization of the annealing schedule, the RBM semantically trained by reverse annealing achieves better scores on reconstruction tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا