ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimensional crossover in a layered ferromagnet detected by spin correlation driven distortions

134   0   0.0 ( 0 )
 نشر من قبل David Hsieh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-elastic distortions are commonly detected across magnetic long-range ordering (LRO) transitions. In principle, they are also induced by the magnetic short-range ordering (SRO) that precedes a LRO transition, which contains information about short-range correlations and energetics that are essential for understanding how LRO is established. However these distortions are difficult to resolve because the associated atomic displacements are exceedingly small and do not break symmetry. Here we demonstrate high-multipole nonlinear optical polarimetry as a sensitive and mode selective probe of SRO induced distortions using CrSiTe$_3$ as a testbed. This compound is composed of weakly bonded sheets of nearly isotropic ferromagnetically interacting spins that, in the Heisenberg limit, would individually be impeded from LRO by the Mermin-Wagner theorem. Our results show that CrSiTe$_3$ evades this law via a two-step crossover from two- to three-dimensional magnetic SRO, manifested through two successive and previously undetected totally symmetric distortions above its Curie temperature.



قيم البحث

اقرأ أيضاً

382 - G. P. Guo , Y. J. Zhao , T. Tu 2009
Resistively Detected Nuclear Magnetic Resonance (RD-NMR) has been used to investigate a two-subband electron system in a regime where quantum Hall pseudo-spin ferromagnetic (QHPF) states are prominently developed. It reveals that the easy-axis QHPF s tate around the total filling factor $ u =4 $ can be detected by the RD-NMR measurement. Approaching one of the Landau level (LL) crossing points, the RD-NMR signal strength and the nuclear spin relaxation rate $1/T_{1}$ enhance significantly, a signature of low energy spin excitations. However, the RD-NMR signal at another identical LL crossing point is surprisingly missing which presents a puzzle.
113 - J. Fransson 2021
Chiral induced spin selectivity is a phenomenon that has been attributed to chirality, spin-orbit interactions, and non-equilibrium conditions, while the role of electron exchange and correlations have been investigated only marginally until very rec ently. However, as recent experiments show that chiral molecules acquire a finite spin-polarization merely by being in contact with a metallic surface, these results suggest that electron correlations play a more crucial role for the emergence of the phenomenon than previously thought. Here, it is demonstrated that molecular vibrations give rise to molecular charge redistribution and accompanied spin-polarization when coupling a chiral molecule to a non-magnetic metal. It is, moreover, shown that enantiomer separation, due to spin-polarization intimately related to the chirality, can be understood in terms of the proposed model.
Energy-efficient switching of magnetization is a central problem in nonvolatile magnetic storage and magnetic neuromorphic computing. In the past two decades, several efficient methods of magnetic switching were demonstrated including spin torque, ma gneto-electric, and microwave-assisted switching mechanisms. Here we report the discovery of a new mechanism giving rise to magnetic switching. We experimentally show that low-dimensional magnetic chaos induced by alternating spin torque can strongly increase the rate of thermally-activated magnetic switching in a nanoscale ferromagnet. This mechanism exhibits a well-pronounced threshold character in spin torque amplitude and its efficiency increases with decreasing spin torque frequency. We present analytical and numerical calculations that quantitatively explain these experimental findings and reveal the key role played by low-dimensional magnetic chaos near saddle equilibria in enhancement of the switching rate. Our work unveils an important interplay between chaos and stochasticity in the energy assisted switching of magnetic nanosystems and paves the way towards improved energy efficiency of spin torque memory and logic.
We study spin wave relaxation in quantum Hall ferromagnet regimes. Spin-orbit coupling is considered as a factor determining spin nonconservation, and external random potential as a cause of energy dissipation making spin-flip processes irreversible. We compare this relaxation mechanism with other relaxation channels existing in a quantum Hall ferromagnet.
The spin-transfer-torque-driven (STT-driven) dynamics of a domain wall in an easy-axis rare-earth transition-metal ferrimagnet is investigated theoretically and numerically in the vicinity of the angular momentum compensation point $T_A$, where the n et spin density vanishes. The particular focus is given on the unusual interaction of the antiferromagnetic dynamics of a ferrimagnetic domain wall and the adiabatic component of STT, which is absent in antiferromagnets but exists in the ferrimagnets due to the dominant coupling of conduction electrons to transition-metal spins. Specifically, we first show that the STT-induced domain-wall velocity changes its sign across $T_A$ due to the sign change of the net spin density, giving rise to a phenomenon unique to ferrimagnets that can be used to characterize $T_A$ electrically. It is also shown that the frequency of the STT-induced domain-wall precession exhibits its maximum at $T_A$ and it can approach the spin-wave gap at sufficiently high currents. Lastly, we report a numerical observation that, as the current density increases, the domain-wall velocity starts to deviate from the linear-response result, calling for a more comprehensive theory for the domain-wall dynamics in ferrimagnets driven by a strong current.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا