ﻻ يوجد ملخص باللغة العربية
The mixing of orbital and spin character in the wave functions of the $5d$ iridates has led to predictions of strong couplings among their lattice, electronic and magnetic degrees of freedom. As well as realizing a novel spin-orbit assisted Mott-insulating ground state, the perovskite iridate Sr$_{2}$IrO$_{4}$ has strong similarities with the cuprate La$_{2}$CuO$_{4}$, which on doping hosts a charge-density wave that appears intimately connected to high-temperature superconductivity. These phenomena can be sensitively probed through momentum-resolved measurements of the lattice dynamics, made possible by meV-resolution inelastic x-ray scattering. Here we report the first such measurements for both parent and electron-doped Sr$_{2}$IrO$_{4}$. We find that the low-energy phonon dispersions and intensities in both compounds are well described by the same nonmagnetic density functional theory calculation. In the parent compound, no changes of the phonons on magnetic ordering are discernible within the experimental resolution, and in the doped compound no anomalies are apparent due to charge-density waves. These measurements extend our knowledge of the lattice properties of (Sr$_{1-x}$La$_{x}$)$_{2}$IrO$_{4}$ and constrain the couplings of the phonons to magnetic and charge order.
Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high $T_C$ superconductivity. Recently, photoex
We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr$_2$IrO$_4$ upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a
We investigate the temporal evolution of electronic states in strontium iridate Sr$_2$IrO$_4$. The time resolved photoemission spectra of intrinsic, electron doped and the hole doped samples are monitored in identical experimental conditions. Our dat
The magnetic excitations in electron doped (Sr$_{1-x}$La$_x$)$_2$IrO$_4$ with $x = 0.03$ were measured using resonant inelastic X-ray scattering at the Ir $L_3$-edge. Although much broadened, well defined dispersive magnetic excitations were observed
Electric field effect (EFE) controlled magnetoelectric transport in thin films of undoped and La-doped Sr$_{2}$IrO$_{4}$ (SIO) were investigated under the action of ionic liquid gating. Despite large carrier density modulation, the temperature depend