ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetotransport in Al6Re

64   0   0.0 ( 0 )
 نشر من قبل Shiyan Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since very few Type-I superconductors are known and most are elemental superconductors, there are very few experimental platforms where the interaction between Type-I superconductivity and topologically nontrivial band structure can be probed. The rhenium aluminide Al$_6$Re has recently been identified as a Type-I superconductor with a transition of 0.74,K and a critical field of $sim$50,Oe. Here, we report its magnetotransport behavior including de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) oscillations. Angular dependence of the magnetoresistance reveals a highly anisotropic Fermi surface with dominant hole character. From the strong oscillatory component $Delta R_{xx}$ in high magnetic fields up to 33,T, the Landau index infinite-field intercept in the case of a single oscillation frequency, and the phase factor $varphi$ where multiple frequencies coexist, are both $sim$1/4. This intermediate value is suggestive of possible nontrivial band topology but does not allow strong conclusions.



قيم البحث

اقرأ أيضاً

The discovery of iron-based superconductors caused great excitement, as they were the second high-$T_c$ materials after cuprates. Because of a peculiar topological feature of the electronic band structure, investigators quickly realized that the anti ferromagnetic parent phase harbors Dirac fermions. Here we show that the parent phase also exhibits the quantum Hall effect. We determined the longitudinal and Hall conductivities in CaFeAsF up to a magnetic field of 45 T and found that both approach zero above ~40 T. CaFeAsF has Dirac electrons and Schrodinger holes, and our analysis indicates that the Landau-level filling factor $ u$ = 2 for both at these high field strengths. We therefore argue that the $ u$ = 0 quantum Hall state emerges under these conditions. Our finding of quantum Hall physics at play in a topologically nontrivial parent phase adds a new dimension to research on iron-based superconductors and also provides a new material variety for the study of the $ u$ = 0 quantum Hall state.
We investigate the thermodynamic properties of FeSe under the in-plane magnetic fields using torque magnetometry, specific heat, magnetocaloric measurements. Below the upper critical field Hc2, we observed the field-induced anomalies at H1 ~ 15 T and H2 ~ 22 T near H//ab and below a characteristic temperature T* ~ 2 K. The transition magnetic fields H1 and H2 exhibit negligible dependence on both temperature and field orientation. This contrasts with the strong temperature and angle dependence of Hc2, suggesting that these anomalies are attributed to the field-induced phase transitions, originating from the inherent spin-density-wave instability of quasiparticles near the superconducting gap minima or possible Flude-Ferrell-Larkin-Ovchinnikov state in the highly spin-polarized Fermi surfaces. Our observations imply that FeSe, an atypical multiband superconductor with extremely small Fermi energies, represents a unique model system for stabilizing unusual superconducting orders beyond the Pauli limit.
In strongly correlated materials the electronic and optical properties are significantly affected by the coupling of fermionic quasiparticles to different degrees of freedom, such as lattice vibrations and bosonic excitations of electronic origin. Br oadband ultrafast spectroscopy is emerging as the premier technique to unravel the subtle interplay between quasiparticles and electronic or phononic collective excitations, by their different characteristic timescales and spectral responses. By investigating the femtosecond dynamics of the optical properties of Y-Bi2212 crystals over the 0.5-2 eV energy range, we disentangle the electronic and phononic contributions to the generalized electron-boson Eliashberg function, showing that the spectral distribution of the electronic excitations, such as spin fluctuations and current loops, and the strength of their interaction with quasiparticles can account for the high critical temperature of the superconducting phase transition. Finally, we discuss how the use of this technique can be extended to the underdoped region of the phase diagram of cuprates, in which a pseudogap in the quasiparticle density of states opens. The microscopic modeling of the interaction of ultrashort light pulses with unconventional superconductors will be one of the key challenges of the next-years materials science, eventually leading to the full understanding of the role of the electronic correlations in controlling the dynamics on the femtosecond timescale.
We study a three-dimensional chiral second order topological insulator (SOTI) subject to a magnetic field. Via its gauge field, the applied magnetic field influences the electronic motion on the lattice, and via the Zeeman effect, the field influence s the electronic spin. We compare two approaches to the problem: an effective surface theory, and a full lattice calculation. The surface theory predicts a massive Dirac spectrum on each of the gapped surfaces, giving rise to Landau levels once the surfaces are pierced by magnetic flux. The surface theory qualitatively agrees with our lattice calculations, accurately predicting the surface gap as well as the spin and orbital components of the states at the edges of the surface Dirac bands. In the context of the lattice theory, we calculate the spectrum with and without magnetic field and find a deviation from the surface theory when a gauge field is applied. The energy of the lowest-lying Landau level is found closer to zero than is predicted by the surface theory, which leads to an observable magnetotransport signature: inside the surface gap, there exist different energy regions where either one or two chiral hinge modes propagate in either direction, quantizing the differential conductance to either one or two conductance quanta.
We report on synthesis and characterization of gallide cluster based Mo8Ga41 superconductor. Transport and magnetization measurements confirm the superconducting transition temperature to be 9.8 K. The upper critical field, lower critical field, Ginz burg-Landau coherence length and penetration depth are estimated to be 11.8T, 150G, 5.2nm, 148nm respectively. The electronic band structure, density of states and phonon dispersion curve calculations are obtained by using Density Functional Theory. The core level X-ray Photoelectron Spectroscopy (XPS) reveals the binding energy information of the constituting elements Mo and Ga in Mo8Ga41. The valence band spectra from XPS is in good agreement with calculated density of states (DOS). The zero field critical current density (Jc) at T = 2 K is ~ 3*10^5 A/cm^2 which is indicative of efficient flux pinning in the as grown compound. About two fold enhancement in critical current density with application of external pressure (1.1 GPa) is observed with marginal decrease in transition temperature. The fitting of current density to double exponential model confirms possibility of two gap superconductivity in Mo8Ga41.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا