ﻻ يوجد ملخص باللغة العربية
Penneys game is a two player zero-sum game in which each player chooses a three-flip pattern of heads and tails and the winner is the player whose pattern occurs first in repeated tosses of a fair coin. Because the players choose sequentially, the second mover has the advantage. In fact, for any three-flip pattern, there is another three-flip pattern that is strictly more likely to occur first. This paper provides a novel no-arbitrage argument that generates the winning odds corresponding to any pair of distinct patterns. The resulting odds formula is equivalent to that generated by Conways leading number algorithm. The accompanying betting odds intuition adds insight into why Conways algorithm works. The proof is simple and easy to generalize to games involving more than two outcomes, unequal probabilities, and competing patterns of various length. Additional results on the expected duration of Penneys game are presented. Code implementing and cross-validating the algorithms is included.
We introduce and analyze several variations of Penneys game aimed to find a more equitable game.
Consider equipping an alphabet $mathcal{A}$ with a group action that partitions the set of words into equivalence classes which we call patterns. We answer standard questions for the Penneys game on patterns and show non-transitivity for the game on
The no-arbitrage property is widely accepted to be a centerpiece of modern financial mathematics and could be considered to be a financial law applicable to a large class of (idealized) markets. The paper addresses the following basic question: can o
We provide a general framework for no-arbitrage concepts in topological vector lattices, which covers many of the well-known no-arbitrage concepts as particular cases. The main structural condition we impose is that the outcomes of trading strategies
We analyze a coin-based game with two players where, before starting the game, each player selects a string of length $n$ comprised of coin tosses. They alternate turns, choosing the outcome of a coin toss according to specific rules. As a result, th