ﻻ يوجد ملخص باللغة العربية
Two experimental studies reported the spontaneous formation of amorphous and crystalline structures of C60 intercalated between graphene and a substrate. They observed interesting phenomena ranging from reaction between C60 molecules under graphene to graphene sagging between the molecules and control of strain in graphene. Motivated by these works, we performed fully atomistic reactive molecular dynamics simulations to study the formation and thermal stability of graphene wrinkles as well as graphene attachment to and detachment from the substrate when graphene is laid over a previously distributed array of C60 molecules on a copper substrate at different values of temperature. As graphene compresses the C60 molecules against the substrate, and graphene attachment to the substrate between C60s (C60s stands for plural of C60) depends on the height of graphene wrinkles, configurations with both frozen and non-frozen C60s structures were investigated in order to verify the experimental result of stable sagged graphene when the distance between C60s is about 4 nm and height of graphene wrinkles is about 0.8 nm. Below the distance of 4 nm between C60s, graphene becomes locally suspended and less strained. We show that this happens when C60s are allowed to deform under the compressive action of graphene. If we keep the C60s frozen, spontaneous blanketing of graphene happens only when the distance between them are equal or above 7 nm. Both above results for the existence of stable sagged graphene for C60 distances of 4 or 7 nm are shown to agree with a mechanical model relating the rigidity of graphene to the energy of graphene-substrate adhesion. In particular, this study might help the development of 2D confined nanoreactors that are considered in literature to be the next advanced step on chemical reactions.
The motion of a C60 molecule over a graphene sheet at finite temperature is investigated both theoretically and computationally. We show that a graphene sheet generates a van der Waals laterally periodic potential, which directly influences the motio
We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers inv
Molecular dynamics (MD) simulations were performed to study the formation process of nanopores in a suspended graphene sheet irradiated by using energetic ions though a mask. By controlling the ion parameters including mass, energy and incident angle
We performed calculations of electronic, optical and transport properties of graphene on hBN with realistic moire patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially impo
We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow inte