A Triangle Algorithm for Semidefinite Version of Convex Hull Membership Problem


الملخص بالإنكليزية

Given a subset $mathbf{S}={A_1, dots, A_m}$ of $mathbb{S}^n$, the set of $n times n$ real symmetric matrices, we define its {it spectrahull} as the set $SH(mathbf{S}) = {p(X) equiv (Tr(A_1 X), dots, Tr(A_m X))^T : X in mathbf{Delta}_n}$, where ${bf Delta}_n$ is the {it spectraplex}, ${ X in mathbb{S}^n : Tr(X)=1, X succeq 0 }$. We let {it spectrahull membership} (SHM) to be the problem of testing if a given $b in mathbb{R}^m$ lies in $SH(mathbf{S})$. On the one hand when $A_i$s are diagonal matrices, SHM reduces to the {it convex hull membership} (CHM), a fundamental problem in LP. On the other hand, a bounded SDP feasibility is reducible to SHM. By building on the {it Triangle Algorithm} (TA) cite{kalchar,kalsep}, developed for CHM and its generalization, we design a TA for SHM, where given $varepsilon$, in $O(1/varepsilon^2)$ iterations it either computes a hyperplane separating $b$ from $SH(mathbf{S})$, or $X_varepsilon in mathbf{Delta}_n$ such that $Vert p(X_varepsilon) - b Vert leq varepsilon R$, $R$ maximum error over $mathbf{Delta}_n$. Under certain conditions iteration complexity improves to $O(1/varepsilon)$ or even $O(ln 1/varepsilon)$. The worst-case complexity of each iteration is $O(mn^2)$, plus testing the existence of a pivot, shown to be equivalent to estimating the least eigenvalue of a symmetric matrix. This together with a semidefinite version of Caratheodory theorem allow implementing TA as if solving a CHM, resorting to the {it power method} only as needed, thereby improving the complexity of iterations. The proposed Triangle Algorithm for SHM is simple, practical and applicable to general SDP feasibility and optimization. Also, it extends to a spectral analogue of SVM for separation of two spectrahulls.

تحميل البحث