The phase-integral and worldline-instanton methods are two widely used methods to calculate Schwinger pair-production densities in electric fields of fixed direction that depend on just one time or space coordinate in the same fixed plane of the electromagnetic field tensor. We show that for charged spinless bosons the leading results of the phase-integral method integrated up through quadratic momenta are equivalent to those of the worldline-instanton method including prefactors. We further apply the phase-integral method to fermion production and time-dependent electric fields parallel to a constant magnetic field.