ترغب بنشر مسار تعليمي؟ اضغط هنا

Partial Correlations in Compositional Data Analysis

80   0   0.0 ( 0 )
 نشر من قبل Ionas Erb
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Ionas Erb




اسأل ChatGPT حول البحث

Partial correlations quantify linear association between two variables adjusting for the influence of the remaining variables. They form the backbone for graphical models and are readily obtained from the inverse of the covariance matrix. For compositional data, the covariance structure is specified from log ratios of variables, so unless we try to open the data via a normalization, this implies changes in the definition and interpretation of partial correlations. In the present work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial correlation that has a number of advantages over current measures of association. For this, we show that the residuals of log-ratios between a variable with a reference, when adjusting for all remaining variables including the reference, are reference-independent. Since the reference itself can be controlled for, correlations between residuals are defined for the variables directly without the necessity to recur to ratios except when specifying which variables are partialled out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found with measures of pairwise association on compositional data. They are well-defined between two variables, are properly scaled, and allow for negative association. By design, they are subcompositionally incoherent, but they share this property with conventional partial correlations (where results change when adjusting for the influence of fewer variables). We discuss the equivalence with normalization-based approaches whenever the normalizing variables are controlled for. We also discuss the partial variances and correlations we obtain from a previously studied data set of Roman glass cups.



قيم البحث

اقرأ أيضاً

93 - Zhuoqun Wang , Jialiang Mao , 2021
Modern microbiome compositional data are often high-dimensional and exhibit complex dependency among microbial taxa. However, existing approaches to analyzing microbiome compositional data either do not adequately account for the complex dependency o r lack scalability to high-dimensionality, which presents challenges in appropriately incorporating the random effects in microbiome compositions in the resulting statistical analysis. We introduce a generative model called the logistic-tree normal (LTN) model to address this need. The LTN marries two popular classes of models -- the log-ratio normal (LN) and the Dirichlet-tree (DT) -- and inherits key benefits of each. LN models are flexible in characterizing covariance among taxa but lacks scalability to higher dimensions; DT avoids this issue through a tree-based binomial decomposition but incurs restrictive covariance. The LTN incorporates the tree-based decomposition as the DT does, but it jointly models the corresponding binomial probabilities using a (multivariate) logistic-normal distribution as in LN models. It therefore allows rich covariance structures as LN, along with computational efficiency realized through a Polya-Gamma augmentation on the binomial models at the tree nodes. Accordingly, Bayesian inference on LTN can readily proceed by Gibbs sampling. The LTN also allows common techniques for effective inference on high-dimensional data -- such as those based on sparsity and low-rank assumptions in the covariance structure -- to be readily incorporated. Depending on the goal of the analysis, LTN can be used either as a standalone model or embedded into more sophisticated hierarchical models. We demonstrate its use in estimating taxa covariance and in mixed-effects modeling. Finally, we carry out an extensive case study using an LTN-based mixed-effects model to analyze a longitudinal dataset from the DIABIMMUNE project.
Applications such as the analysis of microbiome data have led to renewed interest in statistical methods for compositional data, i.e., multivariate data in the form of probability vectors that contain relative proportions. In particular, there is con siderable interest in modeling interactions among such relative proportions. To this end we propose a class of exponential family models that accommodate general patterns of pairwise interaction while being supported on the probability simplex. Special cases include the family of Dirichlet distributions as well as Aitchisons additive logistic normal distributions. Generally, the distributions we consider have a density that features a difficult to compute normalizing constant. To circumvent this issue, we design effective estimation methods based on generaliz
Compositional data represent a specific family of multivariate data, where the information of interest is contained in the ratios between parts rather than in absolute values of single parts. The analysis of such specific data is challenging as the a pplication of standard multivariate analysis tools on the raw observations can lead to spurious results. Hence, it is appropriate to apply certain transformations prior further analysis. One popular multivariate data analysis tool is independent component analysis. Independent component analysis aims to find statistically independent components in the data and as such might be seen as an extension to principal component analysis. In this paper we examine an approach of how to apply independent component analysis on compositional data by respecting the nature of the former and demonstrate the usefulness of this procedure on a metabolomic data set.
184 - Ionas Erb , Nihat Ay 2020
Information geometry uses the formal tools of differential geometry to describe the space of probability distributions as a Riemannian manifold with an additional dual structure. The formal equivalence of compositional data with discrete probability distributions makes it possible to apply the same description to the sample space of Compositional Data Analysis (CoDA). The latter has been formally described as a Euclidean space with an orthonormal basis featuring components that are suitable combinations of the original parts. In contrast to the Euclidean metric, the information-geometric description singles out the Fisher information metric as the only one keeping the manifolds geometric structure invariant under equivalent representations of the underlying random variables. Well-known concepts that are valid in Euclidean coordinates, e.g., the Pythogorean theorem, are generalized by information geometry to corresponding notions that hold for more general coordinates. In briefly reviewing Euclidean CoDA and, in more detail, the information-geometric approach, we show how the latter justifies the use of distance measures and divergences that so far have received little attention in CoDA as they do not fit the Euclidean geometry favored by current thinking. We also show how entropy and relative entropy can describe amalgamations in a simple way, while Aitchison distance requires the use of geometric means to obtain more succinct relationships. We proceed to prove the information monotonicity property for Aitchison distance. We close with some thoughts about new directions in CoDA where the rich structure that is provided by information geometry could be exploited.
235 - Jingru Zhang , Wei Lin 2021
Dimension reduction for high-dimensional compositional data plays an important role in many fields, where the principal component analysis of the basis covariance matrix is of scientific interest. In practice, however, the basis variables are latent and rarely observed, and standard techniques of principal component analysis are inadequate for compositional data because of the simplex constraint. To address the challenging problem, we relate the principal subspace of the centered log-ratio compositional covariance to that of the basis covariance, and prove that the latter is approximately identifiable with the diverging dimensionality under some subspace sparsity assumption. The interesting blessing-of-dimensionality phenomenon enables us to propose the principal subspace estimation methods by using the sample centered log-ratio covariance. We also derive nonasymptotic error bounds for the subspace estimators, which exhibits a tradeoff between identification and estimation. Moreover, we develop efficient proximal alternating direction method of multipliers algorithms to solve the nonconvex and nonsmooth optimization problems. Simulation results demonstrate that the proposed methods perform as well as the oracle methods with known basis. Their usefulness is illustrated through an analysis of word usage pattern for statisticians.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا