ﻻ يوجد ملخص باللغة العربية
Radio signal classification has a very wide range of applications in the field of wireless communications and electromagnetic spectrum management. In recent years, deep learning has been used to solve the problem of radio signal classification and has achieved good results. However, the radio signal data currently used is very limited in scale. In order to verify the performance of the deep learning-based radio signal classification on real-world radio signal data, in this paper we conduct experiments on large-scale real-world ACARS and ADS-B signal data with sample sizes of 900,000 and 13,000,000, respectively, and with categories of 3,143 and 5,157 respectively. We use the same Inception-Residual neural network model structure for ACARS signal classification and ADS-B signal classification to verify the ability of a single basic deep neural network model structure to process different types of radio signals, i.e., communication bursts in ACARS and pulse bursts in ADS-B. We build an experimental system for radio signal deep learning experiments. Experimental results show that the signal classification accuracy of ACARS and ADS-B is 98.1% and 96.3%, respectively. When the signal-to-noise ratio (with injected additive white Gaussian noise) is greater than 9 dB, the classification accuracy is greater than 92%. These experimental results validate the ability of deep learning to classify large-scale real-world radio signals. The results of the transfer learning experiment show that the model trained on large-scale ADS-B datasets is more conducive to the learning and training of new tasks than the model trained on small-scale datasets.
The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limi
Radio signal classification has a very wide range of applications in cognitive radio networks and electromagnetic spectrum monitoring. In this article, we consider scenarios where multiple nodes in the network participate in cooperative classificatio
A Deep Neural Network is applied to classify physical signatures obtained from physical sensor measurements of running gasoline and diesel-powered vehicles and other devices. The classification provides information on the target identities as to vehi
We designed and implemented a deep learning based RF signal classifier on the Field Programmable Gate Array (FPGA) of an embedded software-defined radio platform, DeepRadio, that classifies the signals received through the RF front end to different m
Deep learning methods achieve great success in many areas due to their powerful feature extraction capabilities and end-to-end training mechanism, and recently they are also introduced for radio signal modulation classification. In this paper, we pro