ﻻ يوجد ملخص باللغة العربية
In arbitrary dimension, we consider a theory described by the most general quadratic curvature corrections of Einstein gravity together with a self-interacting nonminimally coupled scalar field. This theory is shown to admit five different families of Lifshitz black holes dressed with a nontrivial scalar field. The entropy of these configurations is microscopically computed by means of a higher-dimensional anisotropic Cardy-like formula where the role of the ground state is played by the soliton obtained through a double analytic continuation. This involves to calculate the correct expressions for the masses of the higher-dimensional Lifshitz black hole as well as their corresponding soliton. The robustness of this Cardy-like formula is checked by showing that the microscopic entropy is in perfect agreement with the gravitational Wald entropy. Consequently, the calculated global charges are compatible with the first law of thermodynamics. We also verify that all the configurations satisfy an anisotropic higher-dimensional version of the Smarr formula.
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the sol
Gravitational backgrounds in d+2 dimensions have been proposed as holographic duals to Lifshitz-like theories describing critical phenomena in d+1 dimensions with critical exponent zgeq 1. We numerically explore a dilaton-Einstein-Maxwell model admit
We consider scalar field perturbations about asymptotically Lifshitz black holes with dynamical exponent z in D dimensions. We show that, for suitable boundary conditions, these Lifshitz black holes are stable under scalar field perturbations. For z=
We calculate log corrections to the entropy of three-dimensional black holes with soft hairy boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two diff
We revisit the study of the phase structure of higher spin black holes carried out in arXiv$:1210.0284$ using the canonical formalism. In particular we study the low as well as high temperature regimes. We show that the Hawking-Page transition takes