ﻻ يوجد ملخص باللغة العربية
The Quantum Alternating Operator Ansatz (QAOA) is a promising gate-model meta-heuristic for combinatorial optimization. Applying the algorithm to problems with constraints presents an implementation challenge for near-term quantum resources. This work explores strategies for enforcing hard constraints by using $XY$-Hamiltonians as mixing operators (mixers). Despite the complexity of simulating the $XY$ model, we demonstrate that for problems represented through one-hot-encoding, certain classes of the mixer Hamiltonian can be implemented without Trotter error in depth $O(kappa)$ where $kappa$ is the number of assignable colors. We also specify general strategies for implementing QAOA circuits on all-to-all connected hardware graphs and linearly connected hardware graphs inspired by fermionic simulation techniques. Performance is validated on graph coloring problems that are known to be challenging for a given classical algorithm. The general strategy of using $XY$-mixers is borne out numerically, demonstrating a significant improvement over the general $X$-mixer, and moreover the generalized $W$-state yields better performance than easier-to-generate classical initial states when $XY$ mixers are used.
We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dy
We study the two dimensional XY-model with high precision Monte Carlo techniques and investigate the continuum approach of the step-scaling function of its finite volume mass gap. The continuum extrapolated results are found consistent with analytic
Matrix Product States (MPS) and Projected Entangled Pair States (PEPS) are powerful analytical and numerical tools to assess quantum many-body systems in one and higher dimensions, respectively. While MPS are comprehensively understood, in PEPS funda
We explore numerically, analytically, and experimentally the relationship between quasi-normal modes (QNMs) and transmission resonance (TR) peaks in the transmission spectrum of one-dimensional (1D) and quasi-1D open disordered systems. It is shown t
An eigenvalue problem relevant for non-linear sigma model with singular metric is considered. We prove the existence of a non-degenerate pure point spectrum for all finite values of the size R of the system. In the infrared (IR) regime (large R) the