ترغب بنشر مسار تعليمي؟ اضغط هنا

Unifying Question Answering, Text Classification, and Regression via Span Extraction

103   0   0.0 ( 0 )
 نشر من قبل Nitish Shirish Keskar
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Even as pre-trained language encoders such as BERT are shared across many tasks, the output layers of question answering, text classification, and regression models are significantly different. Span decoders are frequently used for question answering, fixed-class, classification layers for text classification, and similarity-scoring layers for regression tasks, We show that this distinction is not necessary and that all three can be unified as span extraction. A unified, span-extraction approach leads to superior or comparable performance in supplementary supervised pre-trained, low-data, and multi-task learning experiments on several question answering, text classification, and regression benchmarks.



قيم البحث

اقرأ أيضاً

In several question answering benchmarks, pretrained models have reached human parity through fine-tuning on an order of 100,000 annotated questions and answers. We explore the more realistic few-shot setting, where only a few hundred training exampl es are available, and observe that standard models perform poorly, highlighting the discrepancy between current pretraining objectives and question answering. We propose a new pretraining scheme tailored for question answering: recurring span selection. Given a passage with multiple sets of recurring spans, we mask in each set all recurring spans but one, and ask the model to select the correct span in the passage for each masked span. Masked spans are replaced with a special token, viewed as a question representation, that is later used during fine-tuning to select the answer span. The resulting model obtains surprisingly good results on multiple benchmarks (e.g., 72.7 F1 on SQuAD with only 128 training examples), while maintaining competitive performance in the high-resource setting.
Open-domain targeted sentiment analysis aims to detect opinion targets along with their sentiment polarities from a sentence. Prior work typically formulates this task as a sequence tagging problem. However, such formulation suffers from problems suc h as huge search space and sentiment inconsistency. To address these problems, we propose a span-based extract-then-classify framework, where multiple opinion targets are directly extracted from the sentence under the supervision of target span boundaries, and corresponding polarities are then classified using their span representations. We further investigate three approaches under this framework, namely the pipeline, joint, and collapsed models. Experiments on three benchmark datasets show that our approach consistently outperforms the sequence tagging baseline. Moreover, we find that the pipeline model achieves the best performance compared with the other two models.
In open question answering (QA), the answer to a question is produced by retrieving and then analyzing documents that might contain answers to the question. Most open QA systems have considered only retrieving information from unstructured text. Here we consider for the first time open QA over both tabular and textual data and present a new large-scale dataset Open Table-and-Text Question Answering (OTT-QA) to evaluate performance on this task. Most questions in OTT-QA require multi-hop inference across tabular data and unstructured text, and the evidence required to answer a question can be distributed in different ways over these two types of input, making evidence retrieval challenging -- our baseline model using an iterative retriever and BERT-based reader achieves an exact match score less than 10%. We then propose two novel techniques to address the challenge of retrieving and aggregating evidence for OTT-QA. The first technique is to use early fusion to group multiple highly relevant tabular and textual units into a fused block, which provides more context for the retriever to search for. The second technique is to use a cross-block reader to model the cross-dependency between multiple retrieved evidence with global-local sparse attention. Combining these two techniques improves the score significantly, to above 27%.
157 - Jie Ma , Jun Liu , Junjun Li 2020
Textbook Question Answering (TQA) is a task that one should answer a diagram/non-diagram question given a large multi-modal context consisting of abundant essays and diagrams. We argue that the explainability of this task should place students as a k ey aspect to be considered. To address this issue, we devise a novel architecture towards span-level eXplanations of the TQA (XTQA) based on our proposed coarse-to-fine grained algorithm, which can provide not only the answers but also the span-level evidences to choose them for students. This algorithm first coarsely chooses top $M$ paragraphs relevant to questions using the TF-IDF method, and then chooses top $K$ evidence spans finely from all candidate spans within these paragraphs by computing the information gain of each span to questions. Experimental results shows that XTQA significantly improves the state-of-the-art performance compared with baselines. The source code is available at https://github.com/keep-smile-001/opentqa
162 - Ning Bian , Xianpei Han , Bo Chen 2021
A fundamental ability of humans is to utilize commonsense knowledge in language understanding and question answering. In recent years, many knowledge-enhanced Commonsense Question Answering (CQA) approaches have been proposed. However, it remains unc lear: (1) How far can we get by exploiting external knowledge for CQA? (2) How much potential of knowledge has been exploited in current CQA models? (3) Which are the most promising directions for future CQA? To answer these questions, we benchmark knowledge-enhanced CQA by conducting extensive experiments on multiple standard CQA datasets using a simple and effective knowledge-to-text transformation framework. Experiments show that: (1) Our knowledge-to-text framework is effective and achieves state-of-the-art performance on CommonsenseQA dataset, providing a simple and strong knowledge-enhanced baseline for CQA; (2) The potential of knowledge is still far from being fully exploited in CQA -- there is a significant performance gap from current models to our models with golden knowledge; and (3) Context-sensitive knowledge selection, heterogeneous knowledge exploitation, and commonsense-rich language models are promising CQA directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا