ترغب بنشر مسار تعليمي؟ اضغط هنا

Global turbulence simulations of the tokamak edge region with GRILLIX

66   0   0.0 ( 0 )
 نشر من قبل Andreas Stegmeir
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Turbulent dynamics in the scrape-off layer (SOL) of magnetic fusion devices is intermittent with large fluctuations in density and pressure. Therefore, a model is required that allows perturbations of similar or even larger magnitude to the time-averaged background value. The fluid-turbulence code GRILLIX is extended to such a global model, which consistently accounts for large variation in plasma parameters. Derived from the drift reduced Braginskii equations, the new GRILLIX model includes electromagnetic and electron-thermal dynamics, retains global parametric dependencies and the Boussinesq approximation is not applied. The penalisation technique is combined with the flux-coordinate independent (FCI) approach [F. Hariri and M. Ottaviani, Comput.Phys.Commun. 184:2419, (2013); A. Stegmeir et al., Comput.Phys.Commun. 198:139, (2016)], which allows to study realistic diverted geometries with X-point(s) and general boundary contours. We characterise results from turbulence simulations and investigate the effect of geometry by comparing simulations in circular geometry with toroidal limiter against realistic diverted geometry at otherwise comparable parameters. Turbulence is found to be intermittent with relative fluctuation levels of up to 40% showing that a global description is indeed important. At the same time via direct comparison, we find that the Boussinesq approximation has only a small quantitative impact in a turbulent environment. In comparison to circular geometry the fluctuations are reduced in diverted geometry, which is related to a different zonal flow structure. Moreover, the fluctuation level has a more complex spatial distribution in diverted geometry. Due to local magnetic shear, which differs fundamentally in circular and diverted geometry, turbulent structures become strongly distorted in the perpendicular direction and are eventually damped away towards the X-point.



قيم البحث

اقرأ أيضاً

We present an energy-conserving discontinuous Galerkin scheme for the full-$f$ electromagnetic gyrokinetic system in the long-wavelength limit. We use the symplectic formulation and solve directly for $partial A_parallel/partial t$, the inductive com ponent of the parallel electric field, using a generalized Ohms law derived directly from the gyrokinetic equation. Linear benchmarks are performed to verify the implementation and show that the scheme avoids the Amp`ere cancellation problem. We perform a nonlinear electromagnetic simulation in a helical open-field-line system as a rough model of the tokamak scrape-off layer using parameters from the National Spherical Torus Experiment (NSTX). This is the first published nonlinear electromagnetic gyrokinetic simulation on open field lines. Comparisons are made to a corresponding electrostatic simulation.
Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions for both a high-$n$ kinetic ballooning mode (KBM) and an intermediate-$n$ kinetic version of peeling-ballooning mode (KPBM) in the edge pedestal of two DII I-D H-mode discharges. When the magnetic shear is reduced in a narrow region of steep pressure gradient, the KPBM is significantly stabilized, while the KBM is weakly destabilized and hence becomes the most-unstable mode. Collisions decrease the KBMs critical $beta$ and increase the growth rate.
Boundary plasma physics plays an important role in tokamak confinement, but is difficult to simulate in a gyrokinetic code due to the scale-inseparable nonlocal multi-physics in magnetic separatrix and open magnetic field geometry. Neutral particles are also an important part of the boundary plasma physics. In the present paper, noble electrostatic gyrokinetic techniques to simulate the flux-driven, low-beta electrostatic boundary plasma is reported. Gyrokinetic ions and drift-kinetic electrons are utilized without scale-separation between the neoclassical and turbulence dynamics. It is found that the nonlinear intermittent turbulence is a natural gyrokinetic phenomenon in the boundary plasma in the vicinity of the magnetic separatrix surface and in the scrape-off layer.
The results of flux-driven, two-fluid simulations in single-null configurations are used to investigate the processes determining the turbulent transport in the tokamak edge. Three turbulent transport regimes are identified: (i) a developed transport regime with turbulence driven by an interchange instability, which shares a number of features with the standard L-mode of tokamak operation, (ii) a suppressed transport regime, characterized by a higher value of the energy confinement time, low-amplitude relative fluctuations driven by a Kelvin-Helmholtz instability, a strong E x B sheared flow, and the formation of a transport barrier, which recalls the H-mode, and (iii) a degraded confinement regime, characterized by a catastrophically large interchange-driven turbulent transport, which reminds the crossing of the Greenwald density limit.We derive an analytical expression of the pressure gradient length in the three regimes. The transition from the developed to the suppressed transport regime is obtained by increasing the heat source or decreasing the collisionality and vice versa for the transition from the developed transport regime to the degraded confinement regime. An analytical expression of the power threshold to access the suppressed transport regime, linked to the power threshold for H-mode access, as well as the maximum density achievable before entering the degraded confinement regime, related to the Greenwald density, are also derived. The experimental dependencies of the power threshold for H-mode access on density, tokamak major radius, and isotope mass are retrieved. The analytical estimate of the density limit contains the correct dependence on the plasma current and on the tokamak minor radius.
Advanced divertor configurations modify the magnetic geometry of the diverter to achieve a combination of strong magnetic flux expansion, increased connection length and higher divertor volume - to improve detachment stability, neutral/impurity confi nement and heat-channel broadening. In this paper, we discuss the modification of the Flux-Coordinate Independent (FCI) turbulence code GRILLIX to treat generalised magnetic geometry, to allow for the investigation of the effect of magnetic geometry on turbulent structures in the edge and SOL. The development of grids and parallel operators from numerically-defined magnetic equilibria is discussed, as is the application of boundary conditions via penalisation, with the finite-width method generalised to treat complex non-conformal boundaries. Initial testing of hyperbolic (advection) and parabolic (diffusion) test cases is presented for the Snowflake scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا