ﻻ يوجد ملخص باللغة العربية
Electrides are special ionic solids with excess cavity-trapped electrons serving as anions. Despite the extensive studies on electrides, the interplay between electrides and magnetism is not well understood due to the lack of stable magnetic electrides, particularly the lack of inorganic magnetic electrides. Here, based on the mechanism of Stoner-type magnetic instability, we propose that in certain electrides the low-dimensionality can facilitate the formation of magnetic ground state because of the enhanced density of states near the Fermi level. To be specific, A5B3 (A = Ca, Sr, Ba; B = As, Sb, Bi) (1D), Sr11Mg2Si10 (0D), Ba7Al10 (0D) and Ba4Al5 (0D) have been identified as stable magnetic electrides with spin-polarization energies of tens to hundreds of meV per formula unit. Especially for Ba5As3, the spin-polarization energy can reach up to 220 meV. Furthermore, we demonstrate that the magnetic moment and spin density mainly derive from the interstitial anionic electrons near the Fermi level. Our work paves a way to the searching of stable magnetic electrides and further exploration of the magnetic properties and related applications in electrides.
Electrides are an emerging class of materials with excess electrons localized in interstices and acting as anionic interstitial quasi-atoms (ISQs). The spatial ion-electron separation means that electrides can be treated physically as ionic crystals,
We propose a design scheme for potential electrides derived from conventional materials. Starting with rare-earth-based ternary halides, we exclude halogens and perform global structure optimization to obtain thermodynamically stable or metastable ph
It is commonly believed that in typical collinear antiferromagnets, with no net magnetization, the energy bands are spin-(Kramers-degenerate. The opposite case is usually associated with a global time-reversal symmetry breaking (e.g., via ferro(i)mag
The recently developed theory of topological quantum chemistry (TQC) has built a close connection between band representations in momentum space and orbital characters in real space. It provides an effective way to diagnose topological materials, lea
Plasmon opens up the possibility to efficiently couple light and matter at sub-wavelength scales. In general, the plasmon frequency is dependent of carrier density. This dependency, however, renders fundamentally a weak plasmon intensity at low frequ