ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Huber Regression on Markov-dependent Data

132   0   0.0 ( 0 )
 نشر من قبل Bai Jiang
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

High-dimensional linear regression has been intensively studied in the community of statistics in the last two decades. For the convenience of theoretical analyses, classical methods usually assume independent observations and sub-Gaussian-tailed errors. However, neither of them hold in many real high-dimensional time-series data. Recently [Sun, Zhou, Fan, 2019, J. Amer. Stat. Assoc., in press] proposed Adaptive Huber Regression (AHR) to address the issue of heavy-tailed errors. They discover that the robustification parameter of the Huber loss should adapt to the sample size, the dimensionality, and the moments of the heavy-tailed errors. We progress in a vertical direction and justify AHR on dependent observations. Specifically, we consider an important dependence structure -- Markov dependence. Our results show that the Markov dependence impacts on the adaption of the robustification parameter and the estimation of regression coefficients in the way that the sample size should be discounted by a factor depending on the spectral gap of the underlying Markov chain.



قيم البحث

اقرأ أيضاً

Several novel statistical methods have been developed to estimate large integrated volatility matrices based on high-frequency financial data. To investigate their asymptotic behaviors, they require a sub-Gaussian or finite high-order moment assumpti on for observed log-returns, which cannot account for the heavy tail phenomenon of stock returns. Recently, a robust estimator was developed to handle heavy-tailed distributions with some bounded fourth-moment assumption. However, we often observe that log-returns have heavier tail distribution than the finite fourth-moment and that the degrees of heaviness of tails are heterogeneous over the asset and time period. In this paper, to deal with the heterogeneous heavy-tailed distributions, we develop an adaptive robust integrated volatility estimator that employs pre-averaging and truncation schemes based on jump-diffusion processes. We call this an adaptive robust pre-averaging realized volatility (ARP) estimator. We show that the ARP estimator has a sub-Weibull tail concentration with only finite 2$alpha$-th moments for any $alpha>1$. In addition, we establish matching upper and lower bounds to show that the ARP estimation procedure is optimal. To estimate large integrated volatility matrices using the approximate factor model, the ARP estimator is further regularized using the principal orthogonal complement thresholding (POET) method. The numerical study is conducted to check the finite sample performance of the ARP estimator.
Distributed data naturally arise in scenarios involving multiple sources of observations, each stored at a different location. Directly pooling all the data together is often prohibited due to limited bandwidth and storage, or due to privacy protocol s. This paper introduces a new robust distributed algorithm for fitting linear regressions when data are subject to heavy-tailed and/or asymmetric errors with finite second moments. The algorithm only communicates gradient information at each iteration and therefore is communication-efficient. Statistically, the resulting estimator achieves the centralized nonasymptotic error bound as if all the data were pooled together and came from a distribution with sub-Gaussian tails. Under a finite $(2+delta)$-th moment condition, we derive a Berry-Esseen bound for the distributed estimator, based on which we construct robust confidence intervals. Numerical studies further confirm that compared with extant distributed methods, the proposed methods achieve near-optimal accuracy with low variability and better coverage with tighter confidence width.
Penalization procedures often suffer from their dependence on multiplying factors, whose optimal values are either unknown or hard to estimate from the data. We propose a completely data-driven calibration algorithm for this parameter in the least-sq uares regression framework, without assuming a particular shape for the penalty. Our algorithm relies on the concept of minimal penalty, recently introduced by Birge and Massart (2007) in the context of penalized least squares for Gaussian homoscedastic regression. On the positive side, the minimal penalty can be evaluated from the data themselves, leading to a data-driven estimation of an optimal penalty which can be used in practice; on the negative side, their approach heavily relies on the homoscedastic Gaussian nature of their stochastic framework. The purpose of this paper is twofold: stating a more general heuristics for designing a data-driven penalty (the slope heuristics) and proving that it works for penalized least-squares regression with a random design, even for heteroscedastic non-Gaussian data. For technical reasons, some exact mathematical results will be proved only for regressogram bin-width selection. This is at least a first step towards further results, since the approach and the method that we use are indeed general.
We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regar ded as the `inputs and the event times are the `outputs. This allows for highly flexible inference of non-linear relationships between covariates and event times. Many existing methods, such as the ubiquitous Cox proportional hazards model, focus primarily on the hazard rate which is typically assumed to take some parametric or semi-parametric form. Our proposed model belongs to the class of accelerated failure time models where we focus on directly characterising the relationship between covariates and event times without any explicit assumptions on what form the hazard rates take. It is straightforward to include various types and combinations of censored and truncated observations. We apply our approach to both simulated and experimental data. We then apply multiple output GP regression, which can handle multiple potentially correlated outputs for each input, to competing risks survival data where multiple event types can occur. By tuning one of the model parameters we can control the extent to which the multiple outputs (the time-to-event for each risk) are dependent thus allowing the specification of correlated risks. Simulation studies suggest that in some cases assuming dependence can lead to more accurate predictions.
79 - Debraj Das , Priyam Das 2020
In the fields of clinical trials, biomedical surveys, marketing, banking, with dichotomous response variable, the logistic regression is considered as an alternative convenient approach to linear regression. In this paper, we develop a novel bootstra p technique based on perturbation resampling method for approximating the distribution of the maximum likelihood estimator (MLE) of the regression parameter vector. We establish second order correctness of the proposed bootstrap method after proper studentization and smoothing. It is shown that inferences drawn based on the proposed bootstrap method are more accurate compared to that based on asymptotic normality. The main challenge in establishing second order correctness remains in the fact that the response variable being binary, the resulting MLE has a lattice structure. We show the direct bootstrapping approach fails even after studentization. We adopt smoothing technique developed in Lahiri (1993) to ensure that the smoothed studentized version of the MLE has a density. Similar smoothing strategy is employed to the bootstrap version also to achieve second order correct approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا