ﻻ يوجد ملخص باللغة العربية
We present a combined theoretical and experimental study of solid-state spin decoherence in an electronic spin bath, focusing specifically on ensembles of nitrogen vacancy (NV) color centers in diamond and the associated substitutional nitrogen spin bath. We perform measurements of NV spin free induction decay times $T_2^*$ and spin-echo coherence times $T_2$ in 25 diamond samples with nitrogen concentrations [N] ranging from 0.01 to 300,ppm. We introduce a microscopic model and perform numerical simulations to quantitatively explain the degradation of both $T_2^*$ and $T_2$ over four orders of magnitude in [N]. Our results resolve a long-standing discrepancy observed in NV $T_2$ experiments, enabling us to describe NV ensemble spin coherence decay shapes as emerging consistently from the contribution of many individual NV.
We consider an ensemble of atoms with $Lambda$-type level structure trapped in a single-mode cavity, and propose a geometric scheme of coherent manipulation of quantum states on the subspace of zero-energy states within the quantum Zeno subspace of t
We demonstrate that CPMG and XYXY decoupling sequences with non-ideal $pi$ pulses can reduce dipolar interactions between spins of the same species in solids. Our simulations of pulsed electron spin resonance (ESR) experiments show that $pi$ rotation
We present an experimental and theoretical study of electronic spin decoherence in ensembles of nitrogen-vacancy (NV) color centers in bulk high-purity diamond at room temperature. Under appropriate conditions, we find ensemble NV spin coherence time
We experimentally study the spin dynamics of mesoscopic ensembles of ultracold magnetic spin-3 atoms located in two separated wells of an optical dipole trap. We use a radio-frequency sweep to selectively flip the spin of the atoms in one of the well
Entanglement measures quantify nonclassical correlations present in a quantum system, but can be extremely difficult to calculate, even more so, when information on its state is limited. Here, we consider broad families of entanglement criteria that