ﻻ يوجد ملخص باللغة العربية
Local similarity between the Mandelbrot set and quadratic Julia sets manifests itself in a variety of ways. We discuss a combinatorial one, in the language of geodesic laminations. More precisely, we compare quadratic invariant laminations representing Julia sets with the so-called Quadratic Minor Lamination (QML) representing a locally connected model of the Mandelbrot set. Similarly to the construction of an invariant lamination by pullbacks of certain leaves, we describe how QML can be generated by properly understood pullbacks of certain minors. In particular, we show that the minors of all non-renormalizable quadratic laminations can be obtained by taking limits of pullbacks of minors from the main cardioid. This is the second, amended version of the paper, to appear in Contemporary Mathematics
Thurston introduced emph{invariant (quadratic) laminations} in his 1984 preprint as a vehicle for understanding the connected Julia sets and the parameter space of quadratic polynomials. Important ingredients of his analysis of the angle doubling map
We give a combinatorial criterion for a critical diameter to be compatible with a non-degenerate quadratic lamination.
We show that any two trajectories of solutions of a one-dimensional fractional differential equation (FDE) either coincide or do not intersect each other. In contrary, in the higher dimensional case, two different trajectories can meet. Furthermore,
We study the dynamics of the geodesic and horocycle flows of the unit tangent bundle $(hat M, T^1mathcal{F})$ of a compact minimal lamination $(M,mathcal F)$ by negatively curved surfaces. We give conditions under which the action of the affine group
In this note we prove that a fractional stochastic delay differential equation which satisfies natural regularity conditions generates a continuous random dynamical system on a subspace of a Holder space which is separable.