ترغب بنشر مسار تعليمي؟ اضغط هنا

On isolation of singular zeros of multivariate analytic systems

64   0   0.0 ( 0 )
 نشر من قبل Kisun Lee
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a separation bound for an isolated multiple root $x$ of a square multivariate analytic system $f$ satisfying that an operator deduced by adding $Df(x)$ and a projection of $D^2f(x)$ in a direction of the kernel of $Df(x)$ is invertible. We prove that the deflation process applied on $f$ and this kind of roots terminates after only one iteration. When $x$ is only given approximately, we give a numerical criterion for isolating a cluster of zeros of $f$ near $x$. We also propose a lower bound of the number of roots in the cluster.



قيم البحث

اقرأ أيضاً

We study the recovery of multivariate functions from reproducing kernel Hilbert spaces in the uniform norm. Our main interest is to obtain preasymptotic estimates for the corresponding sampling numbers. We obtain results in terms of the decay of rela ted singular numbers of the compact embedding into $L_2(D,varrho_D)$ multiplied with the supremum of the Christoffel function of the subspace spanned by the first $m$ singular functions. Here the measure $varrho_D$ is at our disposal. As an application we obtain near optimal upper bounds for the sampling numbers for periodic Sobolev type spaces with general smoothness weight. Those can be bounded in terms of the corresponding benchmark approximation number in the uniform norm, which allows for preasymptotic bounds. By applying a recently introduced sub-sampling technique related to Weavers conjecture we mostly lose a $sqrt{log n}$ and sometimes even less. Finally we point out a relation to the corresponding Kolmogorov numbers.
Given a polynomial system f associated with a simple multiple zero x of multiplicity {mu}, we give a computable lower bound on the minimal distance between the simple multiple zero x and other zeros of f. If x is only given with limited accuracy, we propose a numerical criterion that f is certified to have {mu} zeros (counting multiplicities) in a small ball around x. Furthermore, for simple double zeros and simple triple zeros whose Jacobian is of normalized form, we define modified Newton iterations and prove the quantified quadratic convergence when the starting point is close to the exact simple multiple zero. For simple multiple zeros of arbitrary multiplicity whose Jacobian matrix may not have a normalized form, we perform unitary transformations and modified Newton iterations, and prove its non-quantified quadratic convergence and its quantified convergence for simple triple zeros.
207 - Jiawang Nie , Ke Ye , Lihong Zhi 2020
This paper discusses the problem of symmetric tensor decomposition on a given variety $X$: decomposing a symmetric tensor into the sum of tensor powers of vectors contained in $X$. In this paper, we first study geometric and algebraic properties of s uch decomposable tensors, which are crucial to the practical computations of such decompositions. For a given tensor, we also develop a criterion for the existence of a symmetric decomposition on $X$. Secondly and most importantly, we propose a method for computing symmetric tensor decompositions on an arbitrary $X$. As a specific application, Vandermonde decompositions for nonsymmetric tensors can be computed by the proposed algorithm.
In this work, we study the numerical approximation of a class of singular fully coupled forward backward stochastic differential equations. These equations have a degenerate forward component and non-smooth terminal condition. They are used, for exam ple, in the modeling of carbon market[9] and are linked to scalar conservation law perturbed by a diffusion. Classical FBSDEs methods fail to capture the correct entropy solution to the associated quasi-linear PDE. We introduce a splitting approach that circumvent this difficulty by treating differently the numerical approximation of the diffusion part and the non-linear transport part. Under the structural condition guaranteeing the well-posedness of the singular FBSDEs [8], we show that the splitting method is convergent with a rate $1/2$. We implement the splitting scheme combining non-linear regression based on deep neural networks and conservative finite difference schemes. The numerical tests show very good results in possibly high dimensional framework.
We continue the research on the asymptotic and preasymptotic decay of singular numbers for tensor product Hilbert-Sobolev type embeddings in high dimensions with special emphasis on the influence of the underlying dimension $d$. The main focus in thi s paper lies on tensor products involving univariate Sobolev type spaces with different smoothness. We study the embeddings into $L_2$ and $H^1$. In other words, we investigate the worst-case approximation error measured in $L_2$ and $H^1$ when only $n$ linear samples of the function are available. Recent progress in the field shows that accurate bounds on the singular numbers are essential for recovery bounds using only function values. The asymptotic bounds in our setting are known for a long time. In this paper we contribute the correct asymptotic constant and explicit bounds in the preasymptotic range for $n$. We complement and improve on several results in the literature. In addition, we refine the error bounds coming from the setting where the smoothness vector is moderately increasing, which has been already studied by Papageorgiou and Wo{z}niakowski.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا