ﻻ يوجد ملخص باللغة العربية
In this work, a correspondence between black hole solutions of conformal and massive theories of gravity is found. It is seen that this correspondence imposes some constraints on parameters of these theories. What is more, a relation between the mass of black holes and the parameters of massive gravity is found. Indeed, the acceptable ranges of massive gravity parameters ($c_{1}$ and $c_{2}$) are found. It is shown that by considering the positive mass of black holes, some ranges of $c_{1}$ and $c_{2}$ are acceptable.
We consider the equivalence of quasinormal modes and geodesic quantities recently brought back due to the black hole shadow observation by Event Horizon Telescope. Using WKB method we found an analytical relation between the real part of quasinormal
We present, in an explicit form, the metric for all spherically symmetric Schwarzschild-Bach black holes in Einstein-Weyl theory. In addition to the black hole mass, this complete family of spacetimes involves a parameter that encodes the value of th
We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with
We present a detailed study of the static spherically symmetric solutions in de Rham-Gabadadze-Tolley (dRGT) theory. Since the diffeomorphism invariance can be restored by introducing the St{u}ckelberg fields $phi^a$, there is new invariant $I^{ab}=g
Four-dimensional black hole solutions generated by the low energy string effective action are investigated outside and inside the event horizon. A restriction for a minimal black hole size is obtained in the frame of the model discussed. Intersection