ﻻ يوجد ملخص باللغة العربية
Many theoretical expressions of dissipation along non-equilibrium processes have been proposed. However, they have not been fully verified by experiments. Especially for systems strongly interacting with environments the connection between theoretical quantities and standard thermodynamic observables are not clear. We have developed a computer simulation based on a spin-boson model, which is in principle exact and suitable for testing the proposed theories. We have noted that the dissipation obtained by measuring conventional thermodynamic quantities deviates from the second law of thermodynamics presumably due to the strong coupling. We show that additive correction to entropy makes it more consistent with the second law. This observation appears to be consistent with the theory based on the potential of mean force.
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production satur
The Jaynes-Cummings model, describing the interaction between a single two-level system and a photonic mode, has been used to describe a large variety of systems, ranging from cavity quantum electrodynamics, trapped ions, to superconducting qubits co
We consider a feedback control loop rectifying particle transport through a single quantum dot that is coupled to two electronic leads. While monitoring the occupation of the dot, we apply conditional control operations by changing the tunneling rate
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the in
In this work we investigate the late-time stationary states of open quantum systems coupled to a thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution if the coupling to the ther