ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet

44   0   0.0 ( 0 )
 نشر من قبل Po-Yu Kao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we utilize T1-weighted MR images and StackNet to predict fluid intelligence in adolescents. Our framework includes feature extraction, feature normalization, feature denoising, feature selection, training a StackNet, and predicting fluid intelligence. The extracted feature is the distribution of different brain tissues in different brain parcellation regions. The proposed StackNet consists of three layers and 11 models. Each layer uses the predictions from all previous layers including the input layer. The proposed StackNet is tested on a public benchmark Adolescent Brain Cognitive Development Neurocognitive Prediction Challenge 2019 and achieves a mean squared error of 82.42 on the combined training and validation set with 10-fold cross-validation. In addition, the proposed StackNet also achieves a mean squared error of 94.25 on the testing data. The source code is available on GitHub.



قيم البحث

اقرأ أيضاً

Fluid intelligence (Gf) has been defined as the ability to reason and solve previously unseen problems. Links to Gf have been found in magnetic resonance imaging (MRI) sequences such as functional MRI and diffusion tensor imaging. As part of the Adol escent Brain Cognitive Development Neurocognitive Prediction Challenge 2019, we sought to predict Gf in children aged 9-10 from T1-weighted (T1W) MRIs. The data included atlas-aligned volumetric T1W images, atlas-defined segmented regions, age, and sex for 3739 subjects used for training and internal validation and 415 subjects used for external validation. We trained sex-specific convolutional neural net (CNN) and random forest models to predict Gf. For the convolutional model, skull-stripped volumetric T1W images aligned to the SRI24 brain atlas were used for training. Volumes of segmented atlas regions along with each subjects age were used to train the random forest regressor models. Performance was measured using the mean squared error (MSE) of the predictions. Random forest models achieved lower MSEs than CNNs. Further, the external validation data had a better MSE for females than males (60.68 vs. 80.74), with a combined MSE of 70.83. Our results suggest that predictive models of Gf from volumetric T1W MRI features alone may perform better when trained separately on male and female data. However, the performance of our models indicates that more information is necessary beyond the available data to make accurate predictions of Gf.
Diffusion-weighted (DW) magnetic resonance imaging is essential for the diagnosis and treatment of ischemic stroke. DW images (DWIs) are usually acquired in multi-slice settings where lesion areas in two consecutive 2D slices are highly discontinuous due to large slice thickness and sometimes even slice gaps. Therefore, although DWIs contain rich 3D information, they cannot be treated as regular 3D or 2D images. Instead, DWIs are somewhere in-between (or 2.5D) due to the volumetric nature but inter-slice discontinuities. Thus, it is not ideal to apply most existing segmentation methods as they are designed for either 2D or 3D images. To tackle this problem, we propose a new neural network architecture tailored for segmenting highly-discontinuous 2.5D data such as DWIs. Our network, termed LambdaUNet, extends UNet by replacing convolutional layers with our proposed Lambda+ layers. In particular, Lambda+ layers transform both intra-slice and inter-slice context around a pixel into linear functions, called lambdas, which are then applied to the pixel to produce informative 2.5D features. LambdaUNet is simple yet effective in combining sparse inter-slice information from adjacent slices while also capturing dense contextual features within a single slice. Experiments on a unique clinical dataset demonstrate that LambdaUNet outperforms existing 3D/2D image segmentation methods including recent variants of UNet. Code for LambdaUNet will be released with the publication to facilitate future research.
Reliably detecting anomalies in a given set of images is a task of high practical relevance for visual quality inspection, surveillance, or medical image analysis. Autoencoder neural networks learn to reconstruct normal images, and hence can classify those images as anomalies, where the reconstruction error exceeds some threshold. Here we analyze a fundamental problem of this approach when the training set is contaminated with a small fraction of outliers. We find that continued training of autoencoders inevitably reduces the reconstruction error of outliers, and hence degrades the anomaly detection performance. In order to counteract this effect, an adversarial autoencoder architecture is adapted, which imposes a prior distribution on the latent representation, typically placing anomalies into low likelihood-regions. Utilizing the likelihood model, potential anomalies can be identified and rejected already during training, which results in an anomaly detector that is significantly more robust to the presence of outliers during training.
Training a neural network for a classification task typically assumes that the data to train are given from the beginning. However, in the real world, additional data accumulate gradually and the model requires additional training without accessing t he old training data. This usually leads to the catastrophic forgetting problem which is inevitable for the traditional training methodology of neural networks. In this paper, we propose a continual learning method that is able to learn additional tasks while retaining the performance of previously learned tasks by stacking parameters. Composed of two complementary components, the index module and the StackNet, our method estimates the index of the corresponding task for an input sample with the index module and utilizes a particular portion of StackNet with this index. The StackNet guarantees no degradation in the performance of the previously learned tasks and the index module shows high confidence in finding the origin of an input sample. Compared to the previous work of PackNet, our method is competitive and highly intuitive.
Primary tumors have a high likelihood of developing metastases in the liver and early detection of these metastases is crucial for patient outcome. We propose a method based on convolutional neural networks (CNN) to detect liver metastases. First, th e liver was automatically segmented using the six phases of abdominal dynamic contrast enhanced (DCE) MR images. Next, DCE-MR and diffusion weighted (DW) MR images are used for metastases detection within the liver mask. The liver segmentations have a median Dice similarity coefficient of 0.95 compared with manual annotations. The metastases detection method has a sensitivity of 99.8% with a median of 2 false positives per image. The combination of the two MR sequences in a dual pathway network is proven valuable for the detection of liver metastases. In conclusion, a high quality liver segmentation can be obtained in which we can successfully detect liver metastases.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا