ﻻ يوجد ملخص باللغة العربية
The doubling of massless Dirac fermions on two-dimensional lattices is theoretically studied. It has been shown that the doubling of massless Dirac fermions on a lattice with broken chiral symmetry is topologically protected even when the Dirac cone is tilted. This is due to the generalized chiral symmetry defined for lattice systems, where such models can be generated by a deformation of the chiral-symmetric lattice models. The present paper shows for two-band lattice models that this is a general way to produce systems with the generalized chiral symmetry in that such systems can always be transformed back to a lattice model with the conventional chiral symmetry. We specifically show that the number of zero modes is an invariant of the transformation, leading to the topological protection `{a} la Nielsen-Ninomiya of the doubling of tilted and massless Dirac fermions in two dimensions.
A continuous deformation of a Hamiltonian possessing at low energy two Dirac points of opposite chiralities can lead to a gap opening by merging of the two Dirac points. In two dimensions, the critical Hamiltonian possesses a semi-Dirac spectrum: lin
We construct fixed point lattice models for group supercohomology symmetry protected topological (SPT) phases of fermions in 2+1D. A key feature of our approach is to construct finite depth circuits of local unitaries that explicitly build the ground
The first Weyl semimetal was recently discovered in the NbP class of compounds. Although the topology of these novel materials has been identified, the surface properties are not yet fully understood. By means of scanning tunneling spectroscopy, we f
In this article we discuss generalized harmonic confinement of massless Dirac fermions in (2+1) dimensions using smooth finite magnetic fields. It is shown that these types of magnetic fields lead to conditional confinement, that is confinement is po
For successful realization of a quantum computer, its building blocks (qubits) should be simultaneously scalable and sufficiently protected from environmental noise. Recently, a novel approach to the protection of superconducting qubits has been prop