ﻻ يوجد ملخص باللغة العربية
We study the use of frequency upconversion schemes of near-IR picosecond laser pulses and compare their ability to guide and trigger electric discharges through filamentation in air. Upconversion, such as Second Harmonic Generation, is favorable for triggering electric discharges for given amount of available laser energy, even taking into account the losses inherent to frequency conversion. We focus on the practical question of optimizing the use of energy from a given available laser system and the potential advantage to use frequency conversion schemes.
An 18-level argon collisional radiative model (CRM) suitable for low pressure was established. The model can be solved by combining the optical emission spectroscopy (OES) with Langmuir probe calibration. In the capacitively coupled plasmas (CCPs) wi
Laser frequency can be upconverted in a plasma undergoing ionization. For finite ionization rates, the laser pulse energy is partitioned into a pair of counter-propagating waves and static transverse currents. The wave amplitudes are determined by th
An overview from the past and an outlook for the future of fundamental laser-plasma interactions research enabled by emerging laser systems.
When a relativistic laser pulse with high photon density interacts with a specially tailored thin foil target, a strong torque is exerted on the resulting spiral-shaped foil plasma, or light fan. Because of its structure, the latter can gain signific
In this work, the temporal decay of electrons produced by an atmospheric pin-to-pin nanosecond discharge operating in the spark regime was measured via a combination of microwave Rayleigh scattering (MRS) and laser Rayleigh scattering (LRS). Due to t