ﻻ يوجد ملخص باللغة العربية
Several observations are revealing the widespread occurrence of mildly relativistic wide-angle AGN winds strongly interacting with the gas of their host galaxy. Such winds are potential cosmic-ray accelerators, as supported by gamma-ray observations of the nearby Seyfert galaxy NGC 1068 with the Fermi gamma-ray space telescope. The non-thermal emission produced by relativistic particles accelerated by the AGN-driven wind observed in the circum-nuclear molecular disk of such galaxy is invoked to produce the gamma-ray spectrum. The AGN wind model predicts a hard spectrum that extend in the very high energy band which differs significantly from those corresponding to other models discussed in the literature, like starburst or AGN jet. We present dedicated simulations of observations through the Cherenkov Telescope Array (CTA), the next-generation ground based gamma-ray observatory, of the very high energy spectrum of the Seyfert galaxy NGC 1068 assuming the AGN wind and the AGN jet models. We demonstrate that, considering 50 hours of observations, CTA can be effectively used to constrain the two different emission models, providing important insight into the physics governing the acceleration of particles in non-relativistic AGN-driven outflows. This analysis strongly motivates observations of Seyfert and starburst galaxies with CTA in order to test source population models of the extragalactic gamma-ray and neutrino backgrounds.
The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine teles
The measurement of $gamma$-rays originating from active galactic nuclei offers the unique opportunity to study the propagation of very-high-energy photons over cosmological distances. Most prominently, $gamma$-rays interact with the extragalactic bac
We compute the non-thermal emissions produced by relativistic particles accelerated by the AGN-driven shocks in NGC 1068, and we compare the model predictions with the observed gamma-ray and radio spectra . The former is contributed by pion decay, in
We outline the science prospects for gamma-ray bursts (GRBs) with the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory operating at energies above few tens of GeV. With its low energy threshold, large effective
We investigate the possibility of detection of the VHE gamma-ray counterparts to the neutrino astrophysical sources within the Neutrino Target of Opportunity (NToO) program of CTA using the populations simulated by the FIRESONG software to resemble t