ﻻ يوجد ملخص باللغة العربية
In reinforcement learning (RL), temporal abstraction still remains as an important and unsolved problem. The options framework provided clues to temporal abstraction in the RL, and the option-critic architecture elegantly solved the two problems of finding options and learning RL agents in an end-to-end manner. However, it is necessary to examine whether the options learned through this method play a mutually exclusive role. In this paper, we propose a Hellinger distance regularizer, a method for disentangling options. In addition, we will shed light on various indicators from the statistical point of view to compare with the options learned through the existing option-critic architecture.
In this paper we study the local linearization of the Hellinger--Kantorovich distance via its Riemannian structure. We give explicit expressions for the logarithmic and exponential map and identify a suitable notion of a Riemannian inner product. Sam
We introduce Inner Ensemble Networks (IENs) which reduce the variance within the neural network itself without an increase in the model complexity. IENs utilize ensemble parameters during the training phase to reduce the network variance. While in th
Noisy labels are ubiquitous in real-world datasets, which poses a challenge for robustly training deep neural networks (DNNs) since DNNs can easily overfit to the noisy labels. Most recent efforts have been devoted to defending noisy labels by discar
Especially investigated in recent years, the Gaussian discord can be quantified by a distance between a given two-mode Gaussian state and the set of all the zero-discord two-mode Gaussian states. However, as this set consists only of product states,
Motivated by the need to audit complex and black box models, there has been extensive research on quantifying how data features influence model predictions. Feature influence can be direct (a direct influence on model outcomes) and indirect (model ou