ﻻ يوجد ملخص باللغة العربية
Neutron and x-ray total scattering measurements have been performed on powder samples of the iron chalcogenide superconductor FeSe. Using pair distribution function (PDF) analysis of the total scattering data to investigate short-range atomic correlations, we establish the existence of an instantaneous, local orthorhombic structural distortion attributable to nematic fluctuations that persists well into the high-temperature tetragonal phase, at least up to 300 K and likely to significantly higher temperatures. This short-range orthorhombic distortion is correlated over a length scale of about 1 nm at 300 K and grows to several nm as the temperature is lowered toward the long-range structural transition temperature. In the low-temperature nematic state, the local instantaneous structure exhibits an enhanced orthorhombic distortion relative to the average structure with a typical relaxation length of 3 nm. The quantitative characterization of these orthorhombic fluctuations sheds light on nematicity in this canonical iron-based superconductor.
Many crystalline materials show chemical short range order and relaxation of neighboring atoms. Local structural information can be obtained by analyzing the atomic pair distribution function (PDF) obtained from powder diffraction data. In this paper
Interactions between nematic fluctuations, magnetic order and superconductivity are central to the physics of iron-based superconductors. Here we report on in-plane transverse acoustic phonons in hole-doped Sr$_{1-x}$Na$_x$Fe$_2$As$_2$ measured via i
The interplay between structural and electronic degrees of freedom in complex materials is the subject of extensive debate in physics and materials science. Particularly interesting questions pertain to the nature and extent of pre-transitional short
We measure the electronic structure of FeSe from within individual orthorhombic domains. Enabled by an angle-resolved photoemission spectroscopy beamline with a highly focused beamspot (nano-ARPES), we identify clear stripe-like orthorhombic domains
We report the evolution of the electronic nematic susceptibility in FeSe via Raman scattering as a function of hydrostatic pressure up to 5.8 GPa where the superconducting transition temperature $T_{c}$ reaches its maximum. The critical nematic fluct