ﻻ يوجد ملخص باللغة العربية
We report measurements of the electric dipole matrix elements of the $^{133}$Cs $ $ $6s,^2S_{1/2} rightarrow 7p,^2P_{1/2}$ and $6s,^2S_{1/2} rightarrow 7p,^2P_{3/2}$ transitions. Each of these determinations is based on direct, precise comparisons of the absorption coefficients between two absorption lines. For the $langle 6s,^2S_{1/2}||r|| 7p,^2P_{3/2} rangle$ matrix element, we measure the ratio of the absorption coefficient on this line with that of the D$_1$ transition, $6s,^2S_{1/2} rightarrow 6p,^2P_{1/2}$. The matrix element of the D$_1$ line has been determined with high precision previously by many groups. For the $langle 6s,^2S_{1/2}||r|| 7p,^2P_{1/2} rangle$ matrix element, we measure the ratio of the absorption coefficient on this line with that of the $6s,^2S_{1/2} rightarrow 7p,^2P_{3/2}$ transition. Our results for these matrix elements are $langle 6s,^2S_{1/2}||r|| 7p,^2P_{3/2} rangle = 0.57417 : (57)~a_0$ and $langle 6s,^2S_{1/2}||r|| 7p,^2P_{1/2} rangle = 0.27810 : (45)~a_0$. These measurements have implications for the interpretation of parity nonconservation in atoms.
We report measurements of the Stark shift of the cesium $6s : ^2S_{3/2} rightarrow 7p : ^2P_{3/2} $ and the $6s : ^2S_{1/2} rightarrow 7p : ^2P_{1/2} $ transitions at $lambda = 456$ nm and 459 nm, respectively, in an atomic beam. From these, we deter
We report a measurement of the ratio of electric dipole transition matrix elements of cesium for the $6p,^2P_{1/2} rightarrow 7s,^2S_{1/2}$ and $6p,^2P_{3/2} rightarrow 7s,^2S_{1/2}$ transitions. We determine this ratio of matrix elements through com
Using recent high-precision measurements of electric dipole matrix elements of atomic cesium, we make an improved determination of the scalar ($alpha$) and vector ($beta$) polarizabilities of the cesium $6s ^2S_{1/2} rightarrow 7s ^2S_{1/2} $ trans
We report a measurement of the lifetime of the cesium $7s,^2S_{1/2}$ state using time-correlated single-photon counting spectroscopy in a vapor cell. We excite the atoms using a Doppler-free two-photon transition from the $6s,^2S_{1/2}$ ground state,
The zero crossing of the dynamic differential scalar polarizability of the $S_{1/2}-D_{5/2}$ clock transition in $^{138}$Ba$^+$ has been determined to be $459.1614(28),$THz. Together with previously determined matrix elements and branching ratios, th