ترغب بنشر مسار تعليمي؟ اضغط هنا

Real quadratic Julia sets can have arbitrarily high complexity

261   0   0.0 ( 0 )
 نشر من قبل Cristobal Rojas
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that there exist real parameters $c$ for which the Julia set $J_c$ of the quadratic map $z^2+c$ has arbitrarily high computational complexity. More precisely, we show that for any given complexity threshold $T(n)$, there exist a real parameter $c$ such that the computational complexity of computing $J_c$ with $n$ bits of precision is higher than $T(n)$. This is the first known class of real parameters with a non poly-time computable Julia set.



قيم البحث

اقرأ أيضاً

We find an abundance of Cremer Julia sets of an arbitrarily high computational complexity.
351 - A. Blokh , X. Buff , A.Cheritat 2008
In general, little is known about the exact topological structure of Julia sets containing a Cremer point. In this paper we show that there exist quadratic Cremer Julia sets of positive area such that for a full Lebesgue measure set of angles the imp ressions are degenerate, the Julia set is connected im kleinen at the landing points of these rays, and these points are contained in no other impression.
We define the epsilon-distortion complexity of a set as the shortest program, running on a universal Turing machine, which produces this set at the precision epsilon in the sense of Hausdorff distance. Then, we estimate the epsilon-distortion complex ity of various central Cantor sets on the line generated by iterated function systems (IFSs). In particular, the epsilon-distortion complexity of a C^k Cantor set depends, in general, on k and on its box counting dimension, contrarily to Cantor sets generated by polynomial IFS or random affine Cantor sets.
We prove that Collet-Eckmann rational maps have poly-time computable Julia sets. As a consequence, almost all real quadratic Julia sets are poly-time.
We give an introduction to buried points in Julia sets and a list of questions about buried points, written to encourage aficionados of topology and dynamics to work on these questions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا