ﻻ يوجد ملخص باللغة العربية
Accurate pulmonary nodule detection is a crucial step in lung cancer screening. Computer-aided detection (CAD) systems are not routinely used by radiologists for pulmonary nodule detection in clinical practice despite their potential benefits. Maximum intensity projection (MIP) images improve the detection of pulmonary nodules in radiological evaluation with computed tomography (CT) scans. Inspired by the clinical methodology of radiologists, we aim to explore the feasibility of applying MIP images to improve the effectiveness of automatic lung nodule detection using convolutional neural networks (CNNs). We propose a CNN-based approach that takes MIP images of different slab thicknesses (5 mm, 10 mm, 15 mm) and 1 mm axial section slices as input. Such an approach augments the two-dimensional (2-D) CT slice images with more representative spatial information that helps discriminate nodules from vessels through their morphologies. Our proposed method achieves sensitivity of 92.67% with 1 false positive per scan and sensitivity of 94.19% with 2 false positives per scan for lung nodule detection on 888 scans in the LIDC-IDRI dataset. The use of thick MIP images helps the detection of small pulmonary nodules (3 mm-10 mm) and results in fewer false positives. Experimental results show that utilizing MIP images can increase the sensitivity and lower the number of false positives, which demonstrates the effectiveness and significance of the proposed MIP-based CNNs framework for automatic pulmonary nodule detection in CT scans. The proposed method also shows the potential that CNNs could gain benefits for nodule detection by combining the clinical procedure.
Response evaluation criteria in solid tumors (RECIST) is the standard measurement for tumor extent to evaluate treatment responses in cancer patients. As such, RECIST annotations must be accurate. However, RECIST annotations manually labeled by radio
Accurate segmentation for medical images is important for clinical diagnosis. Existing automatic segmentation methods are mainly based on fully supervised learning and have an extremely high demand for precise annotations, which are very costly and t
We address the problem of supporting radiologists in the longitudinal management of lung cancer. Therefore, we proposed a deep learning pipeline, composed of four stages that completely automatized from the detection of nodules to the classification
Segmentation of mandibles in CT scans during virtual surgical planning is crucial for 3D surgical planning in order to obtain a detailed surface representation of the patients bone. Automatic segmentation of mandibles in CT scans is a challenging tas
Convolutional neural networks (CNN) are now being widely used for classifying and detecting pulmonary abnormalities in chest radiographs. Two complementary generalization properties of CNNs, translation invariance and equivariance, are particularly u