ترغب بنشر مسار تعليمي؟ اضغط هنا

Addressing the [O III]/Hb{eta} Offset of Dwarf Galaxies in the RESOLVE Survey

61   0   0.0 ( 0 )
 نشر من قبل Chris Richardson
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Metal poor dwarf galaxies in the local universe, such as those found in the RESOLVE galaxy survey, often produce high [O III]/Hb{eta} ratios close to the star forming demarcation lines of the diagnostic BPT diagram. Modeling the emission from these galaxies at lower metallicities generally underpredicts this line ratio, which is typically attributed to a deficit of photons >35 eV. We show that applying a model that includes empirical abundances scaled with metallicity strongly influences the thermal balance in HII regions and preserves the [O III]/Hb{eta} offset even in the presence of a harder radiation field generated by interacting binaries. Additional heating mechanisms are more successful in addressing the offset. In accordance with the high sSFR typical of dwarf galaxies in the sample, we demonstrate that cosmic ray heating serves as one mechanism capable of aligning spectral synthesis predictions with observations. We also show that incorporating a range of physical conditions in our modeling can create even better agreement between model calculations and observed emission line ratios. Together these results emphasize that both the hardness of the incident continuum and the variety of physical conditions present in nebular gas clouds must be accurately accounted for prior to drawing conclusions from emission line diagnostic diagrams.



قيم البحث

اقرأ أيضاً

We identify and characterize compact dwarf starburst (CDS) galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe whether this population contains any residual ``blue nuggets, a class of intensely star-for ming compact galaxies first identified at high redshift $z$. Our 50 low-$z$ CDS galaxies are defined by dwarf masses (stellar mass $M_* < 10^{9.5}$ M$_{odot}$), compact bulged-disk or spheroid-dominated morphologies (using a quantitative criterion, $mu_Delta > 8.6$), and specific star formation rates above the defining threshold for high-$z$ blue nuggets ($log$ SSFR [Gyr$^{-1}] > -0.5$). Across redshifts, blue nuggets exhibit three defining properties: compactness relative to contemporaneous galaxies, abundant cold gas, and formation via compaction in mergers or colliding streams. Those with halo mass below $M_{rm halo} sim 10^{11.5}$ M$_{odot}$ may in theory evade permanent quenching and cyclically refuel until the present day. Selected only for compactness and starburst activity, our CDS galaxies generally have $M_{rm halo} lesssim 10^{11.5}$ M$_{odot}$ and gas-to-stellar mass ratio $gtrsim$1. Moreover, analysis of archival DECaLS photometry and new 3D spectroscopic observations for CDS galaxies reveals a high rate of photometric and kinematic disturbances suggestive of dwarf mergers. The SSFRs, surface mass densities, and number counts of CDS galaxies are compatible with theoretical and observational expectations for redshift evolution in blue nuggets. We argue that CDS galaxies represent a maximally-starbursting subset of traditional compact dwarf classes such as blue compact dwarfs and blue E/S0s. We conclude that CDS galaxies represent a low-$z$ tail of the blue nugget phenomenon formed via a moderated compaction channel that leaves open the possibility of disk regrowth and evolution into normal disk galaxies.
We study tidal features (TFs) around galaxies in the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey. Our sample consists of 1048 RESOLVE galaxies that overlap with the DECam Legacy Survey, which reaches an r-band 3$sigma$ depth of $sim$27.9 mag arcsec$^{-2}$ for a 100 arcsec$^{2}$ feature. Images were masked, smoothed, and inspected for TFs like streams, shells, or tails/arms. We find TFs in 17$^{pm 2} %$ of our galaxies, setting a lower limit on the true frequency. The frequency of TFs in the gas-poor (gas-to-stellar mass ratio $<$ 0.1) subsample is lower than in the gas-rich subsample (13$^{pm 3} %$ vs. 19$^{pm 2} %$). Within the gas-poor subsample, galaxies with TFs have higher stellar and halo masses, $sim 3times$ closer distances to nearest neighbors (in the same group), and possibly fewer group members at fixed halo mass than galaxies without TFs, but similar specific star formation rates. These results suggest TFs in gas-poor galaxies are typically streams/shells from dry mergers or satellite disruption. In contrast, the presence of TFs around gas-rich galaxies does not correlate with stellar or halo mass, suggesting these TFs are often tails/arms from resonant interactions. Similar to TFs in gas-poor galaxies, TFs in gas-rich galaxies imply 1.7x closer nearest neighbors in the same group; however, TFs in gas-rich galaxies are associated with diskier morphologies, higher star formation rates, and higher gas content. In addition to interactions with known neighbors, we suggest that TFs in gas-rich galaxies may arise from accretion of cosmic gas and/or gas-rich satellites below the survey limit.
83 - M. Cignoni 2019
We derive the recent star formation histories of 23 active dwarf galaxies using HST observations from the Legacy Extragalactic UV Survey (LEGUS). We apply a color-magnitude diagram fitting technique using two independent sets of stellar models, PARSE C-COLIBRI and MIST. Despite the non-negligible recent activity, none of the 23 star forming dwarfs show enhancements in the last 100 Myr larger than three times the 100-Myr-average. The unweighted mean of the individual SFHs in the last 100 Myr is also consistent with a rather constant activity, irrespective of the atomic gas fraction. We confirm previous results that for dwarf galaxies the CMD-based average star formation rates (SFRs) are generally higher than the FUV-based SFR. For half of the sample, the 60-Myr-average CMD-based SFR is more than two times the FUV SFR. In contrast, we find remarkable agreement between the 10-Myr-average CMD-based SFR and the H${alpha}$-based SFR. Finally, using core helium burning stars of intermediate mass we study the pattern of star formation spatial progression over the past 60 Myr, and speculate on the possible triggers and connections of the star formation activity with the environment in which these galaxies live. Approximately half of our galaxies show spatial progression of star formation in the last 60 Myr, and/or very recent diffuse and off-center activity compared to RGB stars.
What determines the nuclear radio emission in local galaxies? We combine optical [O III] line emission, robust black hole (BH) mass estimates, and high-resolution e-MERLIN 1.5-GHz data, from the LeMMINGs survey, of a statistically-complete sample of 280 nearby, optically active (LINER and Seyfert) and inactive HII and Absorption line galaxies [ALG]) galaxies. Using [O III] luminosity ($L_{rm [O~III]}$) as a proxy for the accretion power, local galaxies follow distinct sequences in the optical-radio planes of BH activity, which suggest different origins of the nuclear radio emission for the optical classes. The 1.5-GHz radio luminosity of their parsec-scale cores ($L_{rm core}$) is found to scale with BH mass ($M_{rm BH}$) and [O~III] luminosity. Below $M_{rm BH} sim$10$^{6.5}$ M$_{odot}$, stellar processes from non-jetted HII galaxies dominate with $L_{rm core} propto M_{rm BH}^{0.61pm0.33}$ and $L_{rm core} propto L_{rm [O~III]}^{0.79pm0.30}$. Above $M_{rm BH} sim$10$^{6.5}$ M$_{odot}$, accretion-driven processes dominate with $L_{rm core} propto M_{rm BH}^{1.5-1.65}$ and $L_{rm core} propto L_{rm [O~III]}^{0.99-1.31}$ for active galaxies: radio-quiet/loud LINERs, Seyferts and jetted HII galaxies always display (although low) signatures of radio-emitting BH activity, with $L_{rm 1.5, GHz}gtrsim$10$^{19.8}$ W Hz$^{-1}$ and $M_{rm BH}gtrsim10^{7}$ M$_{odot}$, on a broad range of Eddington-scaled accretion rates ($dot{m}$). Radio-quiet and radio-loud LINERs are powered by low-$dot{m}$ discs launching sub-relativistic and relativistic jets, respectively. Low-power slow jets and disc/corona winds from moderately high to high-$dot{m}$ discs account for the compact and edge-brightened jets of Seyferts, respectively. Jetted HII galaxies may host weakly active BHs. Fuel-starved BHs and recurrent activity account for ALG properties. [abridged]
We present a census of variable stars in six M31 dwarf spheroidal satellites observed with the Hubble Space Telescope. We detect 870 RR Lyrae (RRL) stars in the fields of And I (296), II (251), III (111), XV (117), XVI (8), XXVIII (87). We also detec t a total of 15 Anomalous Cepheids, three Eclipsing Binaries, and seven field RRL stars compatible with being members of the M31 halo or the Giant Stellar Stream. We derive robust and homogeneous distances to the six galaxies using different methods based on the properties of the RRL stars. Working with the up-to-date set of Period-Wesenheit ($I$, $B$ - $I$) relations published by Marconi et al., we obtain distance moduli of $mu_0$ = [24.49, 24.16, 24.36, 24.42, 23.70, 24.43] mag (respectively), with systematic uncertainties of 0.08 mag and statistical uncertainties $<$ 0.11 mag. We have considered an enlarged sample of sixteen M31 satellites with published variability studies, and compared their pulsational observables (e.g., periods, amplitudes), with those of fifteen Milky Way satellites for which similar data are available. The properties of the (strictly old) RRL in both satellite systems do not show any significant difference. In particular, we found a strikingly similar correlation between the mean period distribution of the fundamental RRL pulsators (RRab) and the mean metallicities of the galaxies. This indicates that the old RRL progenitors were similar at the early stage in the two environments, suggesting very similar characteristics for the earliest stages of evolution of both satellite systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا