ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable Giant Exchange Bias in an Intercalated Transition Metal Dichalcogenide

87   0   0.0 ( 0 )
 نشر من قبل James Analytis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay of symmetry and quenched disorder leads to some of the most fundamentally interesting and technologically important properties of correlated materials. It also poses the most vexing of theoretical challenges. Nowhere is this more apparent than in the study of spin glasses. A spin glass is characterized by an ergodic landscape of states - an innumerable number of possibilities that are only weakly distinguished energetically, if at all. We show in the material Fe$_x$NbS$_2$, this landscape of states can be biased by coexisitng antiferromagnetic order. This process leads to a phenomenon of broad technological importance: giant, tunable exchange bias. We observe exchange biases that exceed those of conventional materials by more than two orders of magnitude. This work illustrates a novel route to giant exchange bias by leveraging the interplay of frustration and disorder in exotic materials.



قيم البحث

اقرأ أيضاً

Recent advances in tuning the correlated behavior of graphene and transition-metal dichalcogenides (TMDs) have opened a new frontier in the study of many-body physics in two dimensions and promise exciting possibilities for new quantum technologies. An emerging field where these materials have yet to make a deep impact is the study of antiferromagnetic (AFM) spintronics - a relatively new research direction that promises technologies that are insensitive to external magnetic fields, fast switching times, and reduced crosstalk. In this study we present measurements on the intercalated TMD Fe1/3NbS2 which exhibits antiferromagnetic ordering below 42K. We find that current densities on the order of 10^4 A/cm^2 can reorient the magnetic order, the response of which can be detected in the samples resistance. This demonstrates that Fe1/3NbS2 can be used as an antiferromagnetic switch with electronic write-in and read-out. This switching is found to be stable over time and remarkably robust to external magnetic fields. Fe1/3NbS2 is a rare example of an AFM system that exhibits fully electronic switching behavior in single crystal form, making it appealing for low-power, low-temperature memory storage applications. Moreover, Fe1/3NbS2 is part of a much larger family of magnetically intercalated TMDs, some of which may exhibit the switching behavior at higher temperatures and form a platform from which to build tunable AFM spintronic devices.
In this paper, we have found a family of intermetallic compounds YMn12-xFex (x = 6.6-8.8) showing a bulk form of tunable giant exchange bias effect which arises from global interactions among ferromagnetic (FM) and antiferromagnetic (AFM) sublattices but not the interfacial exchange coupling or inhomogeneous magnetic clusters. A giant exchange bias with a loop shift up to 6.1 kOe has been observed in YMn4.4Fe7.6 compound with the strongest competing magnetic interactions. In a narrow temperature range, the exchange bias field shows a sudden switching off whereas the coercivity shows a sudden switching on with increasing temperature. This unique feature indicates that the inter-sublattice exchange coupling is highly homogenous, which can be perfectly interperated by our theoretical calculations.
The exchange bias effect is an essential component of magnetic memory and spintronic devices. Whereas recent research has shown that anisotropies perpendicular to the device plane provide superior stability against thermal noise, it has proven remark ably difficult to realize perpendicular exchange bias in thin-film structures. Here we demonstrate a strong perpendicular exchange bias effect in heterostructures of the quasi-two-dimensional canted antiferromagnet La$_2$CuO$_4$ and ferromagnetic (La,Sr)MnO$_3$ synthesized by ozone-assisted molecular beam epitaxy. The magnitude of this effect can be controlled via the doping level of the cuprate layers. Canted antiferromagnetism of layered oxides is thus a new and potentially powerful source of uniaxial anisotropy in magnetic devices.
The discovery of materials with improved functionality can be accelerated by rational material design. Heusler compounds with tunable magnetic sublattices allow to implement this concept to achieve novel magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant exchange bias (EB) of more than 3 T and a similarly large coercivity are established. The large exchange anisotropy originates from the exchange interaction between the compensated host and ferrimagnetic clusters that arise from intrinsic anti-site disorder. We demonstrate the applicability of our design concept on a second material, Mn-Fe-Ga, with a magnetic transition above room temperature, exemplifying the universality of the concept and the feasibility of room-temperature applications. Our study points to a new direction for novel magneto-electronic devices. At the same time it suggests a new route for realizing rare-earth free exchange-biased hard magnets, where the second quadrant magnetization can be stabilized by the exchange bias.
Results from transport measurements in individual $W_{x}V_{1-x}O_{2}$ nanowires with varying extents of $W$ doping are presented. An abrupt thermally driven metal-insulator transition (MIT) is observed in these wires and the transition temperature de creases with increasing $W$ content at a pronounced rate of - (48-56) K/$at.%W$, suggesting a significant alteration of the phase diagram from the bulk. These nanowires can also be driven through a voltage-driven MIT and the temperature dependence of the insulator to metal and metal to insulator switchings are studied. While driving from an insulator to metal, the threshold voltage at which the MIT occurs follows an exponential temperature dependence ($V_{THuparrow}proptoexp( icefrac{-T}{T_{0}})) $whereas driving from a metal to insulator, the threshold voltage follows $V_{THdownarrow}proptosqrt{T_{c}-T}$ and the implications of these results are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا