The MOMMS Family of Matrix Multiplication Algorithms


الملخص بالإنكليزية

As the ratio between the rate of computation and rate with which data can be retrieved from various layers of memory continues to deteriorate, a question arises: Will the current best algorithms for computing matrix-matrix multiplication on future CPUs continue to be (near) optimal? This paper provides compelling analytical and empirical evidence that the answer is no. The analytical results guide us to a new family of algorithms of which the current state-of-the-art Gotos algorithm is but one member. The empirical results, on architectures that were custom built to reduce the amount of bandwidth to main memory, show that under different circumstances, different and particular members of the family become more superior. Thus, this family will likely start playing a prominent role going forward.

تحميل البحث