ﻻ يوجد ملخص باللغة العربية
Very recently citet{XueYQ2019} reported an important detection of the X-ray transient, CDF-S XT2, whose light curve is analogous to X-ray plateau features of gamma-ray burst afterglows. They suggested that this transient is powered by a remnant stable magnetar from a binary neutron star merger since several pieces of evidence (host galaxy, location, and event rate) all point toward such an assumption. In this paper, we revisit this scenario and confirm that this X-ray emission can be well explained by the internal gradual magnetic dissipation process in an ultra-relativistic wind of the newborn magnetar. We show that both the light curve and spectral evolution of CDF-S XT2 can be well fitted by such a model. Furthermore, we can probe some key properties of the central magnetar, such as its initial spin period, surface magnetic field strength and wind saturation Lorentz factor.
Two bright X-ray transients were reported from the Chandra Deep Field South archival data, namely CDF-S XT1 and XT2. Whereas the nature of the former is not identified, the latter was suggested as an excellent candidate for a rapidly spinning magneta
We present results from the deep XMM-Newton observations of the two brightest X-ray sources in the Chandra Deep Field South (CDFS), PID 203 (z=0.544) and PID 319 (z=0.742). The long exposure of 2.5 Ms over a 10 year period (net 4 yr with a 6 yr gap)
We present the analysis of the extraordinarily bright Gamma-Ray Burst (GRB) 130427A under the hypothesis that the GRB central engine is an accretion-powered magnetar. In this framework, initially proposed to explain GRBs with precursor activity, the
Neutron star-neutron star mergers are known to be associated with short gamma-ray bursts. If the neutron star equation of state is sufficiently stiff, at least some of such mergers will leave behind a supramassive or even a stable neutron star that s
We aim to study the variability properties of bright hard X-ray selected Active Galactic Nuclei (AGN) with redshift between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long XMM observation. Taking advantage of the good count