ﻻ يوجد ملخص باللغة العربية
Quantum information science has the potential to revolutionize modern technology by providing resource-efficient approaches to computing, communication, and sensing. Although the physical qubits in a realistic quantum device will inevitably suffer errors, quantum error correction creates a path to fault-tolerant quantum information processing. Quantum error correction, however, requires that individual qubits can interact with many other qubits in the processor. Engineering this high connectivity can pose a challenge for platforms like electron spin qubits that naturally favor linear arrays. Here, we present an experimental demonstration of the transmission of electron spin states via Heisenberg exchange in an array of spin qubits. We transfer both single-spin and entangled states back and forth in a quadruple quantum-dot array without moving any electrons. Because it is scalable to large numbers of qubits, state transfer through Heisenberg exchange will be especially useful for multi-qubit gates and error-correction in spin-based quantum computers.
A network of quantum-mechanical systems showing long lived phase coherence of its quantum states could be used for processing quantum information. As with classical information processing, a quantum processor requires information bits (qubits) that c
Initialization, manipulation, and measurement of a three-spin qubit are demonstrated using a few-electron triple quantum dot, where all operations can be driven by tuning the nearest-neighbor exchange interaction. Multiplexed reflectometry, applied t
Long-distance transfer of quantum states is an indispensable part of large-scale quantum information processing. We propose a novel scheme for the transfer of two-electron entangled states, from one edge of a quantum dot array to the other by coheren
Heisenberg exchange coupling between neighboring electron spins in semiconductor quantum dots provides a powerful tool for quantum information processing and simulation. Although so far unrealized, extended Heisenberg spin chains can enable long-dist
Isotropic Heisenberg exchange naturally appears as the main interaction in magnetism, usually favouring long-range spin-ordered phases. The anisotropic Dzyaloshinskii-Moriya interaction arises from relativistic corrections and is a priori much weaker