ﻻ يوجد ملخص باللغة العربية
We present a statistical analysis of the first 300 stars observed by the Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six detected planets and three brown dwarfs; from these detections and our contrast curves we infer the underlying distributions of substellar companions with respect to their mass, semi-major axis, and host stellar mass. We uncover a strong correlation between planet occurrence rate and host star mass, with stars M $>$ 1.5 $M_odot$ more likely to host planets with masses between 2-13 M$_{rm Jup}$ and semi-major axes of 3-100 au at 99.92% confidence. We fit a double power-law model in planet mass (m) and semi-major axis (a) for planet populations around high-mass stars (M $>$ 1.5M$_odot$) of the form $frac{d^2 N}{dm da} propto m^alpha a^beta$, finding $alpha$ = -2.4 $pm$ 0.8 and $beta$ = -2.0 $pm$ 0.5, and an integrated occurrence rate of $9^{+5}_{-4}$% between 5-13 M$_{rm Jup}$ and 10-100 au. A significantly lower occurrence rate is obtained for brown dwarfs around all stars, with 0.8$^{+0.8}_{-0.5}$% of stars hosting a brown dwarf companion between 13-80 M$_{rm Jup}$ and 10-100 au. Brown dwarfs also appear to be distributed differently in mass and semi-major axis compared to giant planets; whereas giant planets follow a bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs exhibit just the opposite behaviors. Comparing to studies of short-period giant planets from the RV method, our results are consistent with a peak in occurrence of giant planets between ~1-10 au. We discuss how these trends, including the preference of giant planets for high-mass host stars, point to formation of giant planets by core/pebble accretion, and formation of brown dwarfs by gravitational instability.
We present new observations of the planet beta Pictoris b from 2018 with GPI, the first GPI observations following conjunction. Based on these new measurements, we perform a joint orbit fit to the available relative astrometry from ground-based imagi
The Gemini Planet Imager Exoplanet Survey (GPIES) is a multi-year direct imaging survey of 600 stars to discover and characterize young Jovian exoplanets and their environments. We have developed an automated data architecture to process and index al
We report the results of a ${sim}4$-year direct imaging survey of 104 stars to resolve and characterize circumstellar debris disks in scattered light as part of the Gemini Planet Imager Exoplanet Survey. We targeted nearby (${lesssim}150$ pc), young
The Gemini Planet Imager (GPI) is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field sp
The Gemini Planet Imager (GPI) is a next-generation high-contrast imager built for the Gemini Observatory. The GPI exoplanet survey (GPIES) consortium is made up of 102 researchers from 28 institutions in North and South America and Europe. In Novemb