ترغب بنشر مسار تعليمي؟ اضغط هنا

StegaStamp: Invisible Hyperlinks in Physical Photographs

75   0   0.0 ( 0 )
 نشر من قبل Matthew Tancik
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Printed and digitally displayed photos have the ability to hide imperceptible digital data that can be accessed through internet-connected imaging systems. Another way to think about this is physical photographs that have unique QR codes invisibly embedded within them. This paper presents an architecture, algorithms, and a prototype implementation addressing this vision. Our key technical contribution is StegaStamp, a learned steganographic algorithm to enable robust encoding and decoding of arbitrary hyperlink bitstrings into photos in a manner that approaches perceptual invisibility. StegaStamp comprises a deep neural network that learns an encoding/decoding algorithm robust to image perturbations approximating the space of distortions resulting from real printing and photography. We demonstrates real-time decoding of hyperlinks in photos from in-the-wild videos that contain variation in lighting, shadows, perspective, occlusion and viewing distance. Our prototype system robustly retrieves 56 bit hyperlinks after error correction - sufficient to embed a unique code within every photo on the internet.



قيم البحث

اقرأ أيضاً

We propose a high-quality photo-to-pencil translation method with fine-grained control over the drawing style. This is a challenging task due to multiple stroke types (e.g., outline and shading), structural complexity of pencil shading (e.g., hatchin g), and the lack of aligned training data pairs. To address these challenges, we develop a two-branch model that learns separate filters for generating sketchy outlines and tonal shading from a collection of pencil drawings. We create training data pairs by extracting clean outlines and tonal illustrations from original pencil drawings using image filtering techniques, and we manually label the drawing styles. In addition, our model creates different pencil styles (e.g., line sketchiness and shading style) in a user-controllable manner. Experimental results on different types of pencil drawings show that the proposed algorithm performs favorably against existing methods in terms of quality, diversity and user evaluations.
Automatic identification of plant specimens from amateur photographs could improve species range maps, thus supporting ecosystems research as well as conservation efforts. However, classifying plant specimens based on image data alone is challenging: some species exhibit large variations in visual appearance, while at the same time different species are often visually similar; additionally, species observations follow a highly imbalanced, long-tailed distribution due to differences in abundance as well as observer biases. On the other hand, most species observations are accompanied by side information about the spatial, temporal and ecological context. Moreover, biological species are not an unordered list of classes but embedded in a hierarchical taxonomic structure. We propose a machine learning model that takes into account these additional cues in a unified framework. Our Digital Taxonomist is able to identify plant species in photographs more correctly.
Monocular object detection and tracking have improved drastically in recent years, but rely on a key assumption: that objects are visible to the camera. Many offline tracking approaches reason about occluded objects post-hoc, by linking together trac klets after the object re-appears, making use of reidentification (ReID). However, online tracking in embodied robotic agents (such as a self-driving vehicle) fundamentally requires object permanence, which is the ability to reason about occluded objects before they re-appear. In this work, we re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects, focusing on the illustrative case of people. We demonstrate that current detection and tracking systems perform dramatically worse on this task. We introduce two key innovations to recover much of this performance drop. We treat occluded object detection in temporal sequences as a short-term forecasting challenge, bringing to bear tools from dynamic sequence prediction. Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks. To our knowledge, ours is the first work to demonstrate the effectiveness of monocular depth estimation for the task of tracking and detecting occluded objects. Our approach strongly improves by 11.4% over the baseline in ablations and by 5.0% over the state-of-the-art in F1 score.
195 - Mingfu Xue , Can He , Zhiyu Wu 2020
In this paper, we propose a novel physical stealth attack against the person detectors in real world. The proposed method generates an adversarial patch, and prints it on real clothes to make a three dimensional (3D) invisible cloak. Anyone wearing t he cloak can evade the detection of person detectors and achieve stealth. We consider the impacts of those 3D physical constraints (i.e., radian, wrinkle, occlusion, angle, etc.) on person stealth attacks, and propose 3D transformations to generate 3D invisible cloak. We launch the person stealth attacks in 3D physical space instead of 2D plane by printing the adversarial patches on real clothes under challenging and complex 3D physical scenarios. The conventional and 3D transformations are performed on the patch during its optimization process. Further, we study how to generate the optimal 3D invisible cloak. Specifically, we explore how to choose input images with specific shapes and colors to generate the optimal 3D invisible cloak. Besides, after successfully making the object detector misjudge the person as other objects, we explore how to make a person completely disappeared, i.e., the person will not be detected as any objects. Finally, we present a systematic evaluation framework to methodically evaluate the performance of the proposed attack in digital domain and physical world. Experimental results in various indoor and outdoor physical scenarios show that, the proposed person stealth attack method is robust and effective even under those complex and challenging physical conditions, such as the cloak is wrinkled, obscured, curved, and from different angles. The attack success rate in digital domain (Inria data set) is 86.56%, while the static and dynamic stealth attack performance in physical world is 100% and 77%, respectively, which are significantly better than existing works.
We present a semi-automated system for sizing nasal Positive Airway Pressure (PAP) masks based upon a neural network model that was trained with facial photographs of both PAP mask users and non-users. It demonstrated an accuracy of 72% in correctly sizing a mask and 96% accuracy sizing to within 1 mask size group. The semi-automated system performed comparably to sizing from manual measurements taken from the same images which produced 89% and 100% accuracy respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا