ﻻ يوجد ملخص باللغة العربية
Numerous physical properties of CaPd3Ti4O12 (CPTO) and CaPd3V4O12 (CPVO) double perovskites have been explored based on density functional theory (DFT). The calculated structural parameters fairly agree with the experimental data to confirm their stability. The mechanical stability of these two compounds was clearly observed by the Born stability criteria. To rationalize the mechanical behavior, we investigate elastic constants, bulk, shear and Youngs modulus, Pughs ratio, Poissons ratio and elastic anisotropy index. The ductility index confirms that both materials are ductile in nature. The electronic band structure of CPTO and CPVO reveals the direct band gap semiconducting in nature and metallic characteristics, respectively. The calculated partial density of states indicates the strong hybridization between Pd 4d and O 2p orbital electrons for CPTO and Pd 4d and V 3d O 2p for CPVO. The study of electronic charge density map confirms the coexistence of covalent, ionic and metallic bonding for both compounds. Fermi surface calculation of CPVO ensures both electron and hole like surfaces indicating the multiple band nature. In the midst of optical properties, photoconductivity and absorption coefficient of both compounds reveal well qualitative compliance with consequences of band structure computations. Among the thermodynamic properties, the Debye temperature has been calculated to correlate its topical features including thermoelectric behavior. The studied thermoelectric transport properties of CPTO yielded the Seebeck coefficient (186 microVK-1), power factor (11.9 microWcm-1K-2) and figure of merit (ZT) value of about 0.8 at 800 K indicate that this material could be a promising candidate for thermoelectric device application.
First principles electronic structure calculations have been carried out on ordered double perovskites Sr_2BBO_6 (for B = Cr or Fe and B 4d and 5d transition metal elements) with increasing number of valence electrons at the B-sites, and on Ba_2MnReO
In search of better thermoelectric materials, we have systematically investigated the thermoelectric properties of a 122 Zintl phase compound EuCd$_{2}$As$_{2}$ using textit{ab-initio} density functional theory and semi-classical Boltzmann transport
Electronic structure of FeGa3 has been studied using experiments and ab-initio calculations. Magnetization measurements show that FeGa3 is inherently diamagnetic in nature. Our studies indicate that the previously reported magnetic moment on the Fe a
We study the Raman spectrum of CrI$_3$, a material that exhibits magnetism in a single-layer. We employ first-principles calculations within density functional theory to determine the effects of polarization, strain, and incident angle on the phonon
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {it ab initio} total energy calculations.