ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenvalue and Eigenvector Statistics in Time Series Analysis

61   0   0.0 ( 0 )
 نشر من قبل Paolo Barucca
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of correlated time-series is ubiquitous in statistical analysis, and the matrix decomposition of the cross-correlations between time series is a universal tool to extract the principal patterns of behavior in a wide range of complex systems. Despite this fact, no general result is known for the statistics of eigenvectors of the cross-correlations of correlated time-series. Here we use supersymmetric theory to provide novel analytical results that will serve as a benchmark for the study of correlated signals for a vast community of researchers.



قيم البحث

اقرأ أيضاً

110 - S.L.A. de Queiroz 2005
We study roughness probability distribution functions (PDFs) of the time signal for a critical interface model, which is known to provide a good description of Barkhausen noise in soft ferromagnets. Starting with time ``windows of data collection muc h larger than the systems internal ``loading time (related to demagnetization effects), we show that the initial Gaussian shape of the PDF evolves into a double-Gaussian structure as window width decreases. We supply a physical explanation for such structure, which is compatible with the observed numerical data. Connections to experiment are suggested.
In applications spaning from image analysis and speech recognition, to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging. And therefore, few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero-crossings in a fixed time interval of a zero-mean Gaussian stationary processes. In this study we use the so-called Independent Interval Approximation to go beyond Rices result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agrees well with simulations for the non-Markovian autoregressive model.
We consider a class of rotationally invariant unitary random matrix ensembles where the eigenvalue density falls off as an inverse power law. Under a new scaling appropriate for such power law densities (different from the scaling required in Gaussia n random matrix ensembles), we calculate exactly the two-level kernel that determines all eigenvalue correlations. We show that such ensembles belong to the class of critical ensembles.
We show that the dynamics of simple disordered models, like the directed Trap Model and the Random Energy Model, takes place at a coexistence point between active and inactive dynamical phases. We relate the presence of a dynamic phase transition in these models to the extreme value statistics of the associated random energy landscape.
The largest eigenvalue of a network provides understanding to various dynamical as well as stability properties of the underlying system. We investigate an interplay of inhibition and multiplexing on the largest eigenvalue statistics of networks. Usi ng numerical experiments, we demonstrate that presence of the inhibitory coupling may lead to a very different behaviour of the largest eigenvalue statistics of multiplex networks than those of the isolated networks depending upon network architecture of the individual layer. We demonstrate that there is a transition from the Weibull to the Gumbel or to the Frechet distribution as networks are multiplexed. Furthermore, for denser networks, there is a convergence to the Gumbel distribution as network size increases indicating higher stability of larger systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا