ﻻ يوجد ملخص باللغة العربية
We study the embedding $text{id}: ell_p^b(ell_q^d) to ell_r^b(ell_u^d)$ and prove matching bounds for the entropy numbers $e_k(text{id})$ provided that $0<p<rleq infty$ and $0<qleq uleq infty$. Based on this finding, we establish optimal dimension-free asymptotic rates for the entropy numbers of embeddings of Besov and Triebel-Lizorkin spaces of small dominating mixed smoothness which settles an open question in the literature. Both results rely on a novel covering construction recently found by Edmunds and Netrusov.
In this paper we present results on asymptotic characteristics of multivariate function classes in the uniform norm. Our main interest is the approximation of functions with mixed smoothness parameter not larger than $1/2$. Our focus will be on the b
In this paper we give exact values of the best $n$-term approximation widths of diagonal operators between $ell_p(mathbb{N})$ and $ell_q(mathbb{N})$ with $0<p,qleq infty$. The result will be applied to obtain the asymptotic constants of best $n$-term
We continue the research on the asymptotic and preasymptotic decay of singular numbers for tensor product Hilbert-Sobolev type embeddings in high dimensions with special emphasis on the influence of the underlying dimension $d$. The main focus in thi
Let $1leq p,q < infty$ and $1leq r leq infty$. We show that the direct sum of mixed norm Hardy spaces $big(sum_n H^p_n(H^q_n)big)_r$ and the sum of their dual spaces $big(sum_n H^p_n(H^q_n)^*big)_r$ are both primary. We do so by using Bourgains local
We continue our investigations on pointwise multipliers for Besov spaces of dominating mixed smoothness. This time we study the algebra property of the classes $S^r_{p,q}B(mathbb{R}^d)$ with respect to pointwise multiplication. In addition if $pleq q