A Kaczmarz algorithm for sequences of projections, infinite products, and applications to frames in IFS $L^{2}$ spaces


الملخص بالإنكليزية

We show that an idea, originating initially with a fundamental recursive iteration scheme (usually referred as the Kaczmarz algorithm), admits important applications in such infinite-dimensional, and non-commutative, settings as are central to spectral theory of operators in Hilbert space, to optimization, to large sparse systems, to iterated function systems (IFS), and to fractal harmonic analysis. We present a new recursive iteration scheme involving as input a prescribed sequence of selfadjoint projections. Applications include random Kaczmarz recursions, their limits, and their error-estimates.

تحميل البحث